随机信号分析理论的应用综述Word文档下载推荐.docx

上传人:b****2 文档编号:12951460 上传时间:2022-10-01 格式:DOCX 页数:9 大小:327.54KB
下载 相关 举报
随机信号分析理论的应用综述Word文档下载推荐.docx_第1页
第1页 / 共9页
随机信号分析理论的应用综述Word文档下载推荐.docx_第2页
第2页 / 共9页
随机信号分析理论的应用综述Word文档下载推荐.docx_第3页
第3页 / 共9页
随机信号分析理论的应用综述Word文档下载推荐.docx_第4页
第4页 / 共9页
随机信号分析理论的应用综述Word文档下载推荐.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

随机信号分析理论的应用综述Word文档下载推荐.docx

《随机信号分析理论的应用综述Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《随机信号分析理论的应用综述Word文档下载推荐.docx(9页珍藏版)》请在冰豆网上搜索。

随机信号分析理论的应用综述Word文档下载推荐.docx

第二章随机信号分析的主要内容

2.1随机信号分析的主要研究内容

2.2随机信号分析的基本研究方法

第三章随机信号分析的应用实例

3.1均匀分布白噪声通过低通滤波器

3.2语音盲分离

3.3系统辨识

3.4基于bartlett的周期图法估计功率谱

3.5基于MATLAB_GUI的Kalman滤波程序

第四章展望

参考文献

第一章概述

1.1随机信号分析的研究背景

在一般的通信系统中,所传输的信号都具有一定的不确定性,因此都属于随机信号,否则不可能传递任何信息,也就失去了通信的意义。

随机信号是一种不能用确定的数学关系式来描述的、无法预测未来时刻精准值的信号,也无法用实验的方法重复实现。

随机信号是客观上广泛存在的一类信号,它是持续时间无限长,能量无限大的功率信号,这类信号的分析与处理主要是研究它们在各种变化域中的统计规律,建立相应的数学模型,以便定性和定量的描述其特性,给出相关性能指标,并研究如何改善对象的动静态性能等。

随机信号分析内容涉及线性系统与信号、时间序列分析、数字信号处理、自适应滤波理论、快速算法、谱估计等方面的知识。

我们所学的是从工程应用的角度讨论随机信号的理论分析和研究方法,主要以分析随机信号与系统的相互作用为主要内容。

近年来,随着现代通讯和信息理论的飞速发展,对随机信号的研究已渗透到的各个科学技术领域,随机信号的处理是现代信号处理的重要理论基础和有效方法之一。

1.2主要研究问题

对随机过程(信号)的分析来讲,我们往往不是对一个实验结果(一个实现或一个具体的函数波形)感兴趣,而是关心大量实验结果的某些平均量(统计特性),因而随机过程(信号)的描述方式以及推演方式都应以统计特性为出发点。

这样,尽管从个别的实现看不出什么规律性的东西,但从统计的角度却表现出一定的规律性,即统计规律性,它是本门学科一个最根本的概念。

随机信号分析重点研究一般化(抽象化)的系统干扰和信号,往往仅给出他们的系统函数模型和数学模型,而不是讨论具体的系统,更不会局限于一些具体的电路系统上。

概率论与数理统计随机过程理论等只是处理本命学科有关问题的一种工具因而学习本门课程除了注意处理问题的方法,更重要的是对一数学推演的结果和结论的物理意义有深入的理解。

随机信号通过线性、非线性系统统计特件的变化;

在通信、雷达和其他电子系统中常见的一些典型随机信号,如白噪声、窄带随机过程、高斯随机过程、马尔可夫过程等。

第二章随机信号分析的主要内容

随机信号分析与处理时研究随机信号的特点及其处理方法的专业基础课程,是目标检测、估计、滤波等信号处理的理论基础,在学习过程中,我们需要学会三个概念,统计的概念、模型的概念和物理概念,学习时既要理论联系实际,又要学会数学模型的抽象思维方法。

(一)随机信号分析的主要研究内容:

随机过程的基本概念和基本特征,它是学习随机信号分析的基础;

随机信号的平稳性,平稳随机过程的数字特征、相关函数的性质。

掌握平稳随机序列的期望、自相关序列的求解等;

功率谱密度以及它的性质、互谱密度及性质等;

随机信号两种统计特性的描述方法,重点研究数字特征,均值、方差、相关函数、相干函数、功率谱密度。

平稳随机过程:

将随机过程划分为平稳和非平稳有重要的实际意义,因为过程若属于平稳的可使问题的分析变得简单。

随机信号的功率谱密度:

利用傅里叶变换,研究随机过程的频域分析的功率谱密度并讨论其频率结构带宽以及系统的相互作用。

随机信号通过线性系统:

当输入信号为随机过程时,线性,稳定,时不变系统输出的统计特性,讨论系统的冲激响应h(t)是实函数的情况。

功率谱估值:

基于傅里叶变换的经典法和基于随机信号模型的现代谱估值法,前者称为非参数谱估值法,后者称为参数谱估值法。

窄带随机过程:

建立窄带过程的物理模型和数学模型以及分析窄带信号和系统的重要工具希尔伯特变换,来分析窄带随机过程的统计特性及其一些重要性质。

讨论窄带随机过程经包络检波器和平方律检波器后统计特性的变换。

随机信号通过非线性系统:

当动态非线性系统可分时,分为线性系统与无记忆的非线性系统的级联,一般用多项式和伏特拉级数的方法。

马尔可夫过程:

一随机过程{X(t),t∈T},其值域(状态)可以连续取值,也可以离散取值,如果他的条件概率满足下列关系:

P[X(tn+1)<

=Xn+1X(tn)=xn,X(tn-1)=xn-1,...,X(to)=xo]

=P[X(tn+1)<

=xn+1X(tn)=xn]则X(t)为马尔可夫过程。

基于假设检验的信号检测:

信号的统计检测是随机信号分析与处理的重要内容,应用统计方法来导出判决和估值的步骤,是合乎情理的。

(二)随机信号分析理论的基本研究方法:

在学习随机信号分析这一门课程时除了注意处理随机信号的方法外,更重要的是深入理解数学推演结果、结论的物理意义。

对一些复杂的数学推演的中间步骤不必死记硬背,更不必深究其数学上的严密性,重在弄清楚来龙去脉,掌握分析的思路与方法。

利用计算机为工具,对特定随机过程产生的数据进行统计分析,也是研究随机过程的重要方法,以及利用现代分析手段去分析,研究随机信号用来解决工程应用中的实际问题。

第三章随机信号分析的应用实例

3.1均匀分布白噪声通过低通滤波器

(matlab环境下)

%%%%均匀分布白噪声通过低通滤波器

xn=rand(1,500);

hn=fir1(50,0.3);

[f,xi]=ksdensity(xn);

plot(xi,f);

title('

均匀分布白噪声概率密度'

);

yn=filter(hn,[1],xn);

[t,xi]=ksdensity(yn);

figure;

plot(xi,t);

均匀分布白噪声通过低通滤波器后的概率密度'

均匀分布白噪声概率

均匀分布白噪声通过低通滤波器后的概率密度

3.2语音盲分离

语音信号的盲源就是在源信号和源信号如何混合都未知的情况下,从观测到的混合信号中恢复出未知源信号。

语音信号盲分离技术被成功地用在了通信、医学、图像和语音信号处理等领域。

我们所要研究的混合语音信号盲分离问题就是用麦克风阵列或多个麦克风阵列来模仿人的耳朵,采集得到相互干扰的混叠语音信号,然后通过分离算法将混叠的语音信号相互分离开来,提取我们所感兴趣的信号。

举个例子就是在多人同时说话的嘈杂环境下,我们能够辨识感兴趣人的说话声的能力。

然后把它分辨出来。

3.3系统辨识

根据系统的输入输出时间函数来确定描述系统行为的数学模型。

通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。

对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。

对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。

而系统辨识所研究的问题恰好是这些问题的逆问题。

通常,预先给定一个模型类μ={M},一类输入信号u和等价准则J=L(y,yM);

然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。

系统辨识包括两个方面:

结构辨识和参数估计。

在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。

3.4基于bartlett的周期图法估计功率谱

功率谱估计是随机信号分析中的一个重要内容。

从介绍功率谱的估计原理入手分析经典谱估计和现代谱估计两类估计方法的原理、各自特点及在Matlab中的实现方法。

经典功率谱估计的方差大、谱分辨率差,分辨率反比于有效信号的长度,但现代谱估计的分辨率不受此限制。

给出了功率谱估计的应用。

3.5基于MATLAB_GUI的Kalman滤波程序

MATLAB_GUI为Kalman滤波器的研究和应用提供了一个直观、高效、便捷的利器。

它以矩阵运算为基础,把计算、可视化、仿真以及设计融合到一个交互式的工作环境中。

本文基于MATLAB_GUI对Kalman滤波器进行设计和仿真。

第四章展望

电子信息工程是一门应用计算机等现代化技术进行电子信息控制和信息处理的学科,主要研究信息的获取与处理,电子设备与信息系统的设计、开发、应用和集成。

现在,电子信息工程已经涵盖了社会的诸多方面,像电话交换局里怎么处理各种电话信号,手机是怎样传递我们的声音甚至图像的,我们周围的网络怎样传递数据,甚至信息化时代军队的信息传递中如何保密等都要涉及电子信息工程的应用技术。

我们可以通过一些基础知识的学习认识这些东西,并能够应用更先进的技术进行新产品的研究和开发。

中国IT行业起步至今有十年,很年轻。

新鲜的事物、朝阳的产业总是备受注目。

正是这个原因,计算机专业迅速成为高校的热门专业,不少同学削尖又再削尖了脑袋往这个象牙塔里的象牙顶钻,或为兴趣,或为谋生掌握一门技能,或为前途更好更快地发展。

在学习随机信号分析这一门课程时,应能掌握随机过程的基本概念、其统计特性的描述、随机信号通过系统分析以及电子系统中常见的窄带、正态随机信号的分析,而数字技术的发展使得离散随机信号分析成为本课程的重点要求掌握内容,其在电子信息技术中所占比重及重要性将得到进一步加强。

随机信号理论在它形成的初期,便在通信、雷达、导航以及密码学等领域中获得了广泛的应用。

近年来,随着对随机信号理论研究的进一步深入,人们对随机信号有了更多的认识,随机信号的实际应用也越来越多。

其应用范围从上述领域扩展到自动控制、计算机、声学和光学测量、数字式跟踪和测距系统以及数字网络系统的故障检测等方面。

参考文献:

【1】《“随机信号分析与处理”研究型教学总结》谢明霞,罗鹏飞,张文明,徐振海2009.11

【2】《随机信号在通信系统中的应用》田浪2015.5.18

【3】《基于局域波法和盲源分离的故障诊断方法应用》郝治华2005

【4】《概率论与数理统计》第二版盛骤等北京高等教育出版社2001.

【5】《非平稳随机信号分析与处理》王宏禹国防工业出版社1999.

【6】《非平稳信号的一种ARMA模型参数估计法.信号处理》王文华,王宏禹1998

【7】《ElectronicDesignEngineering》GaoHaiNing,YUANLeiMing,LSun.Designofsignalprocessingmoduleofagriculturalproductsbasedonacousticresonance.2012

【8】《随机信号分析与应用》刘磊2013

【9】《随机信号分析与处理0课程设计案例》张文明,罗鹏飞长沙:

电气电子教学学报,2010

【10】《随机信号分析》赵淑清,郑薇哈尔滨:

哈尔滨工业大学出版社,1999

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 笔试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1