LTEPRACH参数配置解析总结副本.docx
《LTEPRACH参数配置解析总结副本.docx》由会员分享,可在线阅读,更多相关《LTEPRACH参数配置解析总结副本.docx(39页珍藏版)》请在冰豆网上搜索。
LTEPRACH参数配置解析总结副本
LTEPRACH参数配置分析
1引言
1.1编写目的
本文档的编写目的是分析PRACH信道的各参数的配置方法及各邻区间如何进行配置。
1.2文档组织
本文首先对LTE3.0版本需要配置的PRACH信道的各参数进行了说明和描述,根据网络规划如何确定各参数的取值,并给出相邻小区各参数的配置原则。
本文在第2章的后半部分给出了PRACH各参数的配置方法和步骤。
第3章给出了高速模式下的零相关和根序列的配置有一定的关联关系。
1.3预期读者和阅读建议
本文档的预期读者为LTE网络建设人员和LTE网络优化人员、测试人员等。
1.4参考资料
1.《LTE无线配置参数分析.doc》V1.1
2.《LTEPRACH密度需求分析.doc》V1.0
3.《LTE——UMTS长期演进理论与实践》马霓、邬钢等译
4.3GPPTS36.211PhysicalChannelsandModulation
1.5缩写术语和常用符号
英文缩写
英文全称
中文全称
CM
CubicMetric
立方量度
PAPR
Peak-to-AveragePowerRatio
峰均值功率比
PRACH
PhysicalRandomAccessChannel
物理随机接入信道
RACH
RandomAccessChannel
随机接入信道
2PRACH信道的配置分析
2.1PRACH信道的配置参数
LTE中PRACH信道的配置参数主要有五个,都是小区级参数分别是:
✧PRACH配置索引(prach-ConfigurationIndex)
✧零相关配置(zeroCorrelationZoneConfig)
✧根序列索引(rootSequenceIndex)
✧是否为高速状态(highSpeedFlag)
✧频率偏移(prach-FrequencyOffset)
2.1.1PRACH配置索引(prach-ConfigurationIndex)
2.1.1.1参数基本信息
参数编号
取值范围
物理单位
调整步长
0..63
默认值:
51
无
无
参数名称
传送途径
作用范围
参数出处
prach-ConfigurationIndex
eNodeB->UE
Cell
36.211
所属网元及设置途径
小区逻辑无线资源参数->物理随机接入信道->PRACH配置索引
不同场景下的差异化配置说明
无
用于指示小区的PRACH配置索引。
该参数指示了PRACH的频域资源索引、时域的无线帧、半帧、子帧的资源占用情况。
该参数确定后,小区PRACH的时、频资源即可确定,同时也确定了采用的前导格式(0~47为前导格式0~3,47~57为前导格式4),其定义见下表(36.211Table5.7.1-4)。
PRACH
configurationIndex
(SeeTable5.7.1-3)
UL/DLconfiguration(SeeTable4.2-2)
0
1
2
3
4
5
6
0
(0,1,0,2)
(0,1,0,1)
(0,1,0,0)
(0,1,0,2)
(0,1,0,1)
(0,1,0,0)
(0,1,0,2)
1
(0,2,0,2)
(0,2,0,1)
(0,2,0,0)
(0,2,0,2)
(0,2,0,1)
(0,2,0,0)
(0,2,0,2)
2
(0,1,1,2)
(0,1,1,1)
(0,1,1,0)
(0,1,0,1)
(0,1,0,0)
N/A
(0,1,1,1)
3
(0,0,0,2)
(0,0,0,1)
(0,0,0,0)
(0,0,0,2)
(0,0,0,1)
(0,0,0,0)
(0,0,0,2)
4
(0,0,1,2)
(0,0,1,1)
(0,0,1,0)
(0,0,0,1)
(0,0,0,0)
N/A
(0,0,1,1)
5
(0,0,0,1)
(0,0,0,0)
N/A
(0,0,0,0)
N/A
N/A
(0,0,0,1)
6
(0,0,0,2)
(0,0,1,2)
(0,0,0,1)
(0,0,1,1)
(0,0,0,0)
(0,0,1,0)
(0,0,0,1)
(0,0,0,2)
(0,0,0,0)
(0,0,0,1)
(0,0,0,0)
(1,0,0,0)
(0,0,0,2)
(0,0,1,1)
7
(0,0,0,1)
(0,0,1,1)
(0,0,0,0)
(0,0,1,0)
N/A
(0,0,0,0)
(0,0,0,2)
N/A
N/A
(0,0,0,1)
(0,0,1,0)
8
(0,0,0,0)
(0,0,1,0)
N/A
N/A
(0,0,0,0)
(0,0,0,1)
N/A
N/A
(0,0,0,0)
(0,0,1,1)
9
(0,0,0,1)
(0,0,0,2)
(0,0,1,2)
(0,0,0,0)
(0,0,0,1)
(0,0,1,1)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,0,0)
(0,0,0,1)
(1,0,0,1)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,1)
10
(0,0,0,0)
(0,0,1,0)
(0,0,1,1)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(0,0,0,0)
(0,0,1,0)
(1,0,1,0)
N/A
(0,0,0,0)
(0,0,0,1)
(1,0,0,0)
N/A
(0,0,0,0)
(0,0,0,2)
(0,0,1,0)
11
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
N/A
N/A
N/A
N/A
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
12
(0,0,0,1)
(0,0,0,2)
(0,0,1,1)
(0,0,1,2)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,2)
(0,0,0,0)
(0,0,0,1)
(1,0,0,0)
(1,0,0,1)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
13
(0,0,0,0)
(0,0,0,2)
(0,0,1,0)
(0,0,1,2)
N/A
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,1)
N/A
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,1)
14
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
N/A
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,0)
N/A
N/A
(0,0,0,0)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
15
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,1)
(0,0,1,2)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(1,0,0,1)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(2,0,0,0)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,1)
(1,0,0,2)
(0,0,0,0)
(0,0,0,1)
(1,0,0,0)
(1,0,0,1)
(2,0,0,1)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(4,0,0,0)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
16
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(0,0,1,2)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(1,0,1,1)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(2,0,1,0)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,0)
(1,0,0,2)
(0,0,0,0)
(0,0,0,1)
(1,0,0,0)
(1,0,0,1)
(2,0,0,0)
N/A
N/A
17
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,2)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(1,0,0,0)
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,0)
(1,0,0,1)
N/A
N/A
N/A
18
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(0,0,1,2)
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(1,0,0,1)
(1,0,1,1)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(2,0,0,0)
(2,0,1,0)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(1,0,0,0)
(1,0,0,1)
(1,0,0,2)
(0,0,0,0)
(0,0,0,1)
(1,0,0,0)
(1,0,0,1)
(2,0,0,0)
(2,0,0,1)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(4,0,0,0)
(5,0,0,0)
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(1,0,0,2)
19
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,0,1,1)
(1,0,0,0)
(1,0,1,0)
N/A
N/A
N/A
N/A
(0,0,0,0)
(0,0,0,1)
(0,0,0,2)
(0,0,1,0)
(0,0,1,1)
(1,0,1,1)
20/30
(0,1,0,1)
(0,1,0,0)
N/A
(0,1,0,1)
(0,1,0,0)
N/A
(0,1,0,1)
21/31
(0,2,0,1)
(0,2,0,0)
N/A
(0,2,0,1)
(0,2,0,0)
N/A
(0,2,0,1)
22/32
(0,1,1,1)
(0,1,1,0)
N/A
N/A
N/A
N/A
(0,1,1,0)
23/33
(0,0,0,1)
(0,0,0,0)
N/A
(0,0,0,1)
(0,0,0,0)
N/A
(0,0,0,1)
24/34
(0,0,1,1)
(0,0,1,0)
N/A
N/A
N/A
N/A
(0,0,1,0)
25/35
(0,0,0,1)
(0,0,1,1)
(0,0,0,0)
(0,0,1,0)
N/A
(0,0,0,1)
(1,0,0,1)
(0,0,0,0)
(1,0,0,0)
N/A
(0,0,0,1)
(0,0,1,0)
26/36
(0,0,0,1)
(0,0,1,1)
(1,0,0,1)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
N/A
(0,0,0,1)
(1,0,0,1)
(2,0,0,1)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
N/A
(0,0,0,1)
(0,0,1,0)
(1,0,0,1)
27/37
(0,0,0,1)
(0,0,1,1)
(1,0,0,1)
(1,0,1,1)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
N/A
(0,0,0,1)
(1,0,0,1)
(2,0,0,1)
(3,0,0,1)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
N/A
(0,0,0,1)
(0,0,1,0)
(1,0,0,1)
(1,0,1,0)
28/38
(0,0,0,1)
(0,0,1,1)
(1,0,0,1)
(1,0,1,1)
(2,0,0,1)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(2,0,0,0)
N/A
(0,0,0,1)
(1,0,0,1)
(2,0,0,1)
(3,0,0,1)
(4,0,0,1)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(4,0,0,0)
N/A
(0,0,0,1)
(0,0,1,0)
(1,0,0,1)
(1,0,1,0)
(2,0,0,1)
29/39
(0,0,0,1)
(0,0,1,1)
(1,0,0,1)
(1,0,1,1)
(2,0,0,1)
(2,0,1,1)
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
(2,0,0,0)
(2,0,1,0)
N/A
(0,0,0,1)
(1,0,0,1)
(2,0,0,1)
(3,0,0,1)
(4,0,0,1)
(5,0,0,1)
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
(4,0,0,0)
(5,0,0,0)
N/A
(0,0,0,1)
(0,0,1,0)
(1,0,0,1)
(1,0,1,0)
(2,0,0,1)
(2,0,1,0)
40
(0,1,0,0)
N/A
N/A
(0,1,0,0)
N/A
N/A
(0,1,0,0)
41
(0,2,0,0)
N/A
N/A
(0,2,0,0)
N/A
N/A
(0,2,0,0)
42
(0,1,1,0)
N/A
N/A
N/A
N/A
N/A
N/A
43
(0,0,0,0)
N/A
N/A
(0,0,0,0)
N/A
N/A
(0,0,0,0)
44
(0,0,1,0)
N/A
N/A
N/A
N/A
N/A
N/A
45
(0,0,0,0)
(0,0,1,0)
N/A
N/A
(0,0,0,0)
(1,0,0,0)
N/A
N/A
(0,0,0,0)
(1,0,0,0)
46
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
N/A
N/A
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
N/A
N/A
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
47
(0,0,0,0)
(0,0,1,0)
(1,0,0,0)
(1,0,1,0)
N/A
N/A
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
N/A
N/A
(0,0,0,0)
(1,0,0,0)
(2,0,0,0)
(3,0,0,0)
48
(0,1,0,*)
(0,1,0,*)
(0,1,0,*)
(0,1,0,*)
(0,1,0,*)
(0,1,0,*)
(0,1,0,*)
49
(0,2,0,*)
(0,2,0,*)
(0,2,0,*)
(0,2,0,*)
(0,2,0,*)
(0,2,0,*)
(0,2,0,*)
50
(0,1,1,*)
(0,1,1,*)
(0,1,1,*)
N/A
N/A
N/A
(0,1,1,*)
51
(0,0,0,*)
(0,0,0,*)
(0,0,0,*)
(0,0,0,*)
(0,0,0,*)
(0,0,0,*)
(0,0,0,*)
52
(0,0,1,*)
(0,0,1,*)
(0,0,1,*)
N/A
N/A
N/A
(0,0,1,*)
53
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(0,0,1,*)
(0,0,0,*)
(1,0,0,*)
(0,0,0,*)
(1,0,0,*)
(0,0,0,*)
(1,0,0,*)
(0,0,0,*)
(0,0,1,*)
54
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
55
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
56
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
57
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(2,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(2,0,1,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(2,0,1,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(5,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(5,0,0,*)
(0,0,0,*)
(1,0,0,*)
(2,0,0,*)
(3,0,0,*)
(4,0,0,*)
(5,0,0,*)
(0,0,0,*)
(0,0,1,*)
(1,0,0,*)
(1,0,1,*)
(2,0,0,*)
(2,0,1,*)
58
N/A
N/A
N/A
N/A
N/A
N/A
N/A
59
N/A
N/A
N/A
N/A
N/A
N/A
N/A
60
N/A
N/A
N/A
N/A
N/A
N/A
N/A
61
N/A
N/A
N/A
N/A
N/A
N/A
N/A
62
N/A
N/A
N/A
N/A
N/A
N/A
N/A
63
N/A
N/A
N/A
N/A
N/A
N/A
N/A
表格中
的含义如下:
:
在prach-FrequencyOffset的基础上指示同一时刻内频分的各个PRACH信道的频率位置;
:
指示PRACH信道的无线帧位置,0为全部无线帧,1为奇数无线帧,2为偶数无线帧;
:
指示PRACH信道在无线帧的前半帧或后半帧,0为前半帧,1为后半帧;
:
指示PRACH信道在“5ms半帧”内的上子帧序号,带*表示在UpPTS上。
2.1.1.2前导码格式与小区半径的关系
随机接入信号是由CP(长度为TCP)、前导序列(长度为TSEQ)和GT(长度为
)三个部分组成,前导序列与PRACH时隙长度的差为GT,用于对抗多径干扰的保护,以抵消传播时延。
一般来说较长的序列,能获得较好的覆盖范围,但较好的覆盖范围需要较长的CP和GT来抵消相应的往返时延,即小区覆盖范围越大,传输时延越长,需要的GT越大,为适应不同的覆盖要求,36.211协议规定了五种格式的PRACH循环前缀长度、序列长度、以及GT长度如下表3。
Preamble格式和小区覆盖范围的关系约束原则为:
小区内边缘用户的传输时延需要在GT内部,才能保证PRACH能正常接收,且不干扰其他的子帧。
即需要满足的关系为
,
其中,TTCP为循环前缀CP的长度;
TGT为保护间隔;
TRTT为最大往返时间。
根据以上关系,可以得到各种格式下所支持小区的最大半径(考虑
)如表3:
表3
前导格式
CP长度(Ts/
)
GT长度
(
)
0
3168/103.13
2976/96.88
6.25
14.53
1
21024/684.38
15840/515.63
16.67
77.34
2
6240/203.13
6048/196.88