XRD及其晶体结构的相关知识.docx

上传人:b****0 文档编号:12570579 上传时间:2023-04-20 格式:DOCX 页数:10 大小:24.25KB
下载 相关 举报
XRD及其晶体结构的相关知识.docx_第1页
第1页 / 共10页
XRD及其晶体结构的相关知识.docx_第2页
第2页 / 共10页
XRD及其晶体结构的相关知识.docx_第3页
第3页 / 共10页
XRD及其晶体结构的相关知识.docx_第4页
第4页 / 共10页
XRD及其晶体结构的相关知识.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

XRD及其晶体结构的相关知识.docx

《XRD及其晶体结构的相关知识.docx》由会员分享,可在线阅读,更多相关《XRD及其晶体结构的相关知识.docx(10页珍藏版)》请在冰豆网上搜索。

XRD及其晶体结构的相关知识.docx

XRD及其晶体结构的相关知识

XRD及其晶体结构的相关知识

X射线荧光衍射:

利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。

按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。

当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。

较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。

根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。

X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。

激发单元的作用是产生初级X射线。

它由高压发生器和X光管组成。

后者功率较大,用水和油同时冷却。

色散单元的作用是分出想要波长的X射线。

它由样品室、狭缝、测角仪、分析晶体等部分组成。

通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。

探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。

记录单元由放大器、脉冲幅度分析器、显示部分组成。

通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。

X射线荧光能谱仪没有复杂的分光系统,结构简单。

X射线激发源可用X射线发生器,也可用放射性同位素。

能量色散用脉冲幅度分析器。

探测器和记录等与X射线荧光光谱仪相同。

X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。

前者分辨率高,对轻、重元素测定的适应性广。

对高低含量的元素测定灵敏度均能满足要求。

后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。

可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。

对于能量小于2万电子伏特左右的能谱的分辨率差。

X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。

除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。

步进扫描

试样每转动一步(固定的Δθ)就停下来,测量记录系统开始测量该位置上的衍射强度。

强度的测量也有两种方式:

定时计数方式和定数计时方式。

然后试样再转过一步,再进行强度测量。

如此一步步进行下去,完成指定角度范围内衍射图的扫描。

用记录仪记录衍射图时,采用步进扫描方式的优点是不受计数率表RC的影响,没有滞后及RC的平滑效应,分辨率不受RC影响;尤其它在衍射线强度极弱或背底很高时特别有用,在两者共存时更是如此。

因为采用步进扫描时,可以在每个θ角处作较长时间的计数测量,以得到较大的每步总计数,从而可减小计数统计起伏的影响。

步进扫描一般耗费时间较多,因而须认真考虑其参数。

选择步进宽度时需考虑两个因素:

一是所用接收狭缝宽度,步进宽度至少不应大于狭缝宽度所对应的角度;二是所测衍射线线形的尖锐程度,步进宽度过大则会降低分辨率甚至掩盖衍射线剖面的细节。

为此,步进宽度不应大于最尖锐峰的半高度宽的1/2。

但是,也不宜使步进宽度过小。

步进时间即每步停留的测量时间,若长一些,可减小计数统计误差,提高准确度与灵敏度,但将损失工作效率。

·定速连续扫描

试样和接收狭缝以角速度比1:

2的关系匀速转动。

在转动过程中,检测器连续地测量X射线的散射强度,各晶面的衍射线依次被接收。

计算机控制的衍射仪多数采用步进电机来驱动测角仪转动,因此实际上转动并不是严格连续的,而是一步一步地(每步0.0025°)跳跃式转动,在转动速度较慢时尤为明显。

但是检测器及测量系统是连续工作的。

连续扫描的优点是工作效率较高。

例如以2θ每分钟转动4°的速度扫描,扫描范围从20~80°的衍射图15分钟即可完成,而且也有不错的分辨率、灵敏度和精确度,因而对大量的日常工作(一般是物相鉴定工作)是非常合适的。

但在使用长图记录仪记录时,记录图会受到计数率表RC的影响,须适当地选择时间常数。

·脉冲计数率

在衍射仪方法中,X射线的强度用脉冲计数率表示,单位为每秒脉冲数(cps)。

检测器在单位时间输出的平均脉冲数,直接决定于检测器在单位时间接收的光子数。

如果检测器的量子效率为100%,而系统(放大器和脉冲幅度分析器等)又没有计数损失(漏计),那么每秒脉冲数便是每秒光子数。

·能量分辨

是指检测器接收某一能量的量子(某一波长射线的光量子),所输出脉冲信号的平均幅度与入射量子的能量成正比的特性。

·闪烁检测器

是各种晶体X射线衍射工作中通用性能最好的检测器。

它的主要优点是:

对于晶体X射线衍射使用的X射线均具有很高甚至达到100%的量子效率;使用寿命长,稳定性好;此外,它和PC一样,具有很短的分辨时间(10-7秒数量级),因而实际上不必考虑由于检测器本身的限制所带来的计数损失;它和PC一样,对晶体衍射工作使用的软X射线也有一定的能量分辨本领。

因此通常X射线粉末衍射仪配用的是闪烁检测器。

·防散射狭缝

用来防止一些附加散射(如各狭缝光阑边缘的散射,光路上其它金属附件的散射)进入检测器,有助于减低背景。

防散射狭缝是光路中的辅助狭缝,它能限制由于不同原因产生的附加散射进入检测器。

例如光路中空气的散射、狭缝边缘的散射、样品框的散射等等。

此狭缝如果选用得当,可以得到最低的背底,而衍射线强度的降低不超过2%。

如果衍射线强度损失太多,则应改较宽的防散射狭缝。

·接收狭缝

用来限制所接收的衍射光束的宽度。

接收狭缝是为了限制待测角度位置附近区域之外的X射线进入检测器,它的宽度对衍射仪的分辨能力、线的强度以及峰高/背底比有着重要的影响作用。

·发散狭缝

用来限制发散光束的宽度。

发散狭缝的宽度决定了入射X射线束在扫描平面上的发散角。

·Sollar狭缝

是一组平行薄片光阑,实际上是由一组平行等间距的、平面与射线源焦线垂直的金属簿片组成,用来限制X射线在测角仪轴向方向的发散,使X射线束可以近似的看作仅在扫描圆平面上发散的发散束。

·测角仪

是衍射仪上最精密的机械部件,用来精确测量衍射角。

·X射线管

衍射用的X射线管实际上都属于热电子二极管,有密封式和转靶式两种。

前者最大功率不超过2.5KW,视靶材料的不同而异;后者是为获得高强度的X射线而设计的,一般功率在10KW以上。

·能量色散型X射线衍射仪

半导体固体检测器(SSD)是一种具有极高能量分辨本领的射线强度检测器,能用来测量软X射线的能量和波长。

能量色散型X射线衍射仪(EDXRD)是一种以SSD为基础的一种新型衍射仪,使用连续波长的X射线照射样品,在一个固定的角度位置测量衍射线的波长谱,从而计算各衍射晶面的间距d值。

EDXRD也是一种高速多晶衍射设备。

·位敏正比检测器衍射仪

位敏正比检测器(PSPC)是一种新型射线检测器。

它不仅能进行粒子计数测量,而且通过与它配合的一套时间分析系统能够同时得到粒子进入检测器窗口的位置坐标。

因此用PSPC进行测量可以获得如用感光软片进行记录时同样丰富的信息。

PSPC得到的信息直接实时地由计算机系统进行处理,能立即得到实验结果。

应用PSPC已经成功地发展了一种新型的衍射仪--PSPC衍射仪,它能对整个可测量范围内的衍射进行同时记录,是一种高速多晶衍射设备,特别适用于跟踪动态过程的衍射研究。

·微区衍射仪

微区衍射仪是按平行光束型衍射几何设计的,使用特殊的大窗口闪烁检测器或环形窗口的正比检测器。

工作时,检测器沿入射线方向移动,通过固定直径的环形狭缝对各衍射锥面的总强度依次地进行测量。

由于它使用细平行光束,故能对样品的一个微区(直径可小至30μm)进行衍射分析。

·粉末衍射仪

粉末衍射仪是目前研究粉末的X射线衍射最常用而又最方便的设备。

它的光路系统设计采用聚焦光束型的衍射几何,一般使用普通的NaI(Tl)闪烁检测器或正比计数管检测器以电子学方法进行衍射强度的测量;衍射角的测量则通过一台精密的机械测角仪来实现。

·转靶式管

这种管采用一种特殊的运动结构以大大增强靶面的冷却,即所谓旋转阳极X射线管,是目前最实用的高强度X射线发生装置。

管子的阳极设计成圆柱体形,柱面作为靶面,阳极需要用水冷却。

工作时阳极圆柱以高速旋转,这样靶面受电子束轰击的部位不再是一个点或一条线段而是被延展成阳极柱体上的一段柱面,使受热面积展开,从而有效地加强了热量的散发。

所以,这种管的功率能远远超过前两种管子。

对于铜或钼靶管,密封式管的额定功率,目前只能达到2KW左右,而转靶式管最高可达90KW。

·密封式管

这是最常使用的X射线管,它的靶和灯丝密封在高真空的壳体内。

壳体上有对X射线"透明"的X射线出射"窗孔"。

靶和灯丝不能更换,如果需要使用另一种靶,就需要换用另一只相应靶材的管子。

这种管子使用方便,但若灯丝烧断后它的寿命也就完全终结了。

密封式X射线管的寿命一般为1000-2000小时,它的报废往往并不是与因灯丝损坏,而是由于靶面被熔毁或因受到钨蒸气及管内受热部分金属的污染,致使发射的X射线谱线"不纯"而被废用。

·可拆式管

这种X射线管在动真空下工作,配有真空系统,使用时需抽真空使管内真空度达到10-5毫帕或更佳的真空度。

不同元素的靶可以随时更换,灯丝损坏后也可以更换,这种管的寿命可以说是无限的。

·非相干散射

当物质中的电子与原子之间的束缚力较小(如原子的外层电子)时,电子可能被X光子撞离原子成为反冲电子。

因反冲电子将带走一部分能量,使得光子能量减少,从而使随后的散射波波长发生改变。

这样一来,入射波与散射波将不再具有相干能力,成为非相干散射。

·相干散射

物质对X射线散射的实质是物质中的电子与X光子的相互作用。

当入射光子碰撞电子后,若电子能牢固地保持在原来位置上(原子对电子的束缚力很强),则光子将产生刚性碰撞,其作用效果是辐射出电磁波---散射波。

这种散射波的波长和频率与入射波完全相同,新的散射波之间将可以发生相互干涉---相干散射。

X射线的衍射现象正是基于相干散射之上的。

X射线照射到物质上将产生散射。

晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。

绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。

晶体微观结构的特征是具有周期性的长程的有序结构。

晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。

用少量固体粉末或小块样品便可得到其X射线衍射图。

XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大小等)最有力的方法。

XRD特别适用于晶态物质的物相分析。

晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。

因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析;

XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构).等等,应用面十分普遍、广泛。

目前XRD主要适用于无机物,对于有机物应用较少。

关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。

如何由XRD图谱确定所做的样品是准晶结构?

XRD图谱中非晶、准晶和晶体的结构怎么严格区分?

三者并无严格明晰的分界。

在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。

如果这些"峰"明显地变宽,则可以判定样品中的晶体的颗粒尺寸将小于300nm,可以称之为"微晶"。

晶体的X射线衍射理论中有一个Scherrer公式,可以根据谱线变宽的量估算晶粒在该衍射方向上的厚度。

非晶质衍射图的特征是:

在整个扫描角度范围内(从2θ1°~2°开始到几十度)只观察到被散射的X射线强度的平缓的变化,其间可能有一到几个最大值;开始处因为接近直射光束强度较大,随着角度的增加强度迅速下降,到高角度强度慢慢地趋向仪器的本底值。

从Scherrer公式的观点看,这个现象可以视为由于晶粒极限地细小下去而导致晶体的衍射峰极大地宽化、相互重叠而模糊化的结果。

晶粒细碎化的极限就是只剩下原子或离子这些粒子间的"近程有序"了,这就是我们所设想的"非晶质"微观结构的场景。

非晶质衍射图上的一个最大值相对应的是该非晶质中一种常发生的粒子间距离。

介于这两种典型之间而偏一些"非晶质"的过渡情况便是"准晶"态了。

在做X射线衍射时,如果用不同的靶,例如用铜靶或者Cr靶,两者的谱图会一样吗?

如果不同的话,峰的位置和强度有啥变化吗?

有规律吗?

不同的靶,其特征波长不同。

衍射角(又常称为Bragg角或2θ角)决定于实验使用的波长(Bragg方程)。

使用不同的靶也就是所用的X射线的波长不同,根据Bragg方程,某一间距为d的晶面族其衍射角将不同,各间距值的晶面族的衍射角将表现出有规律的改变。

因此,使用不同靶材的X射线管所得到的衍射图上的衍射峰的位置是不相同的,衍射峰位置的变化是有规律的。

而一种晶体自有的一套d值是其结构固有的、可以作为该晶体物质的标志性参数。

因此,不管使用何种靶材的X射线管,从所得到的衍射图获得的某样品的一套d值,与靶材无关。

衍射图上衍射峰间的相对强度主要决定于晶体的结构,但是由于样品的吸收性质也和入射线的波长有关。

因此同一样品用不同靶所取得的图谱上衍射峰间的相对强度会稍有差别,与靶材有关。

重温一下布拉格公式和衍射的强度公式,您的问题答案全都有了。

我想知道不同衍射角对应的晶面,怎么办?

如果你的图能够找到对应的粉末衍射数据卡,那么问题就简单了。

多数的粉末衍射数据卡上面都给出了各衍射线的衍射指标,也就可以知道对应的晶面了。

如果是未知晶体结构的图,就需要求解各衍射线的衍射指标,这一步工作叫做"衍射图的指标化"。

如自己解决需要具备基础的晶体学知识,然后学会一两个指标化的工具软件(如treaor90)进行尝试。

对于正交晶系的晶胞参数,其中a、b、c代表晶胞的三个棱的长度。

但我不清楚如何定义a、b、c的方向,也就是说按照什么依据确定这三条棱的方向?

是否有明确的规定还是可以任意自定义?

一般来说可以用abc的定向原则,其实,用什么方向都可以,它们可以通过矩阵来转换。

晶胞中的a,b,c,分别是三个晶轴方向上的单位平移向量的长度,称为轴长,不是"三个棱"的长度。

轴长符号也常用a0,b0,c0表示。

轴长单位常用?

(埃,Angstrom,=10-10米)或纳米(nm,=10-9米)。

在晶体结构中没有"棱"这样一种说法,只有晶体坐标系,而这个坐标系是用a,b,c,α,β,γ六个参数来表示的,α,β,γ分别代表三个轴间的夹角。

而"晶棱"是指晶体的外形的棱边。

所以说"a、b、c代表晶胞的三个棱的长度"是错误的。

如何计算晶胞体积?

比如说我想计算二氧化锆四方晶相的晶胞体积,甚至是各个晶胞参数,怎么用这个软件来具体处理一下呢?

首先,你要有相应的晶体学方面的知识。

这些软件是为我们处理一些晶体学上的一些问题服务,所以,你不能抛开晶体学去使用软件。

有了一些必要的晶体学知识之后,你再去学习使用这些软件,这样你才能看懂help里的内容。

对于你现在所讲的这个晶胞体积的问题,实际上也就是晶胞参数精确测定的问题,因为晶胞参数精确测定了之后,晶胞体积自然就知道了。

有什么软件能根据分数坐标画出晶体的空间结构?

就是有八面体或者四面体的那种。

根据晶体的结构结构数据,用diamond或atoms等专业的晶体结构绘图软件便可画出晶体的空间结构。

六角结构的晶体在生长时它的内在的优先生长方向是哪一个?

一般来说晶体沿短轴方向生长速度快,垂直于长轴方向的晶面密度较大,从能量的角度说,当晶体生长时,这样的格位更稳定一些。

在X射线测量中(三方晶系)通常给出的都是六方的晶格常数例如a=b=5.741,c=7.141,夹角分别为120°,120°,90°。

现在我想把它换算成三方结构的晶格常数a=b=c=?

夹角a=?

你是通过对衍射数据指标化得出的六方晶格常数,还是从文献得到的?

如果你的晶胞是菱方格子,那么用六方定向和菱方定向是一样的

梁敬魁的《粉末衍射法测定晶体结构》中有公式可以由三方转六方,或六方转三方。

如何知道晶体中原子坐标?

做单晶X-射线衍射才能得到原子的坐标。

除了四圆外,CCD也可进行单晶X-射线衍射。

如何根据X射线衍射数据计算晶粒尺寸晶格常数和畸变,用什么理论和公式?

根据衍射峰的峰形数据可以计算晶粒尺寸晶格常数和畸变。

在衍射峰的宽化仅由于晶粒的细小产生的情况下,根据衍射峰的宽化量应用Scherrer公式便可以估算晶粒在该衍射方向上的厚度。

你如果需要做这方面的计算,需要增加一些入门知识,在本网页上你就能够找到一些有关资料的。

[X射线小角衍射和X射线小角散射]

小角X射线散射(SmallAngleX-rayScattering)和小角X射线衍射(Smallanglex-raydiffraction)是一回事吗?

早期小角X射线散射仅指超细颗粒在低角度范围(常指2θ20°)上的X射线散射,而现在,小角X射线散射通指在低角度范围(常指2θ10°~20°)的X射线散射。

X-射线照射到晶体上发生相干散射(存在位相关系)的物理现象叫衍射,即使发生在低角度也是衍射。

例如,某相的d值为31.5A,相应衍射角为2.80°(Cu-Kα),如果该相有很高的结晶度,31.5A峰还是十分尖锐的。

薄膜也能产生取决于薄膜厚度与薄膜微观结构的、集中在小角范围内的X射线衍射。

在这些情况下,样品的小角X射线散射强度主要来自样品的衍射,称之为小角X射线衍射。

对这类样品,人们关心的是其最大的d值或者是薄膜厚度与结构,必须研究其小角X射线衍射。

X-射线照射到超细粉末颗粒(粒径小于几百埃,不管其是晶体还是非晶体)也会发生相干散射现象,也发生在低角度区。

但是由微细颗粒产生的相干散射图的特征与上述的由超大晶面间距或薄膜产生的小角X射线衍射图的特征完全不同。

小角衍射,一般应用于测定超大晶面间距或薄膜厚度以及薄膜的微观周期结构、周期排列的孔分布等问题;小角散射则是应用于测定超细粉体或疏松多孔材料孔分布的有关性质。

X-射线照射到样品上还会发生非相干散射,其强度分别也主要集中在在低角度范围,康普顿散射就属于此类,其结果是增加背景。

特别声明:

1:

资料来源于互联网,版权归属原作者

2:

资料内容属于网络意见,与本账号立场无关

3:

如有侵权,请告知,立即删除。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 企业管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1