人形机器人机器人第三节课.docx

上传人:b****4 文档编号:12384938 上传时间:2023-04-18 格式:DOCX 页数:8 大小:406.34KB
下载 相关 举报
人形机器人机器人第三节课.docx_第1页
第1页 / 共8页
人形机器人机器人第三节课.docx_第2页
第2页 / 共8页
人形机器人机器人第三节课.docx_第3页
第3页 / 共8页
人形机器人机器人第三节课.docx_第4页
第4页 / 共8页
人形机器人机器人第三节课.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

人形机器人机器人第三节课.docx

《人形机器人机器人第三节课.docx》由会员分享,可在线阅读,更多相关《人形机器人机器人第三节课.docx(8页珍藏版)》请在冰豆网上搜索。

人形机器人机器人第三节课.docx

人形机器人机器人第三节课

人形机器人第三节课

一,科普知识(30分钟)

●马达的发展历史

直流电机的产生与形成

1820年丹麦物理学家奥斯特(HansChristianOersted,1777-1851)发现了电流磁效应:

将导线的一端和伽伐尼电池正极连接,导线沿南北方向平行地放在小磁针上方,当导线另一端连接到负极时,磁针立即指向东西方向。

把玻璃板、木片、石块等非磁性物体插在导线和磁极之间,甚至把小磁针浸在盛水的铜盒子里,磁针照样偏转随后安培通过总结电流在磁场中所受机械力的情况建立了安培定律。

1821年9月法拉第发现通电的导线能绕永久磁铁旋转以及磁体绕载流导体的运动,第一次实现了电磁运动向机械运动的转换,从而建立了电动机的实验室模型,被认为是世界上第一台电机,其原理如图1所示,在一个盘子内注入水银,盘子中央固定一个永磁体,盘子上方悬挂一根导线,导线的一端可在水银中移动,另一端跟电池的一端连接在一起,电池的另一端跟盘子连在一起,构称导电回路,载流导线在磁场中受力运动。

1822年,法国的阿拉戈盖吕萨克发明电磁铁,即用电流通过绕线的方法使其中铁块磁化。

1825年,斯特企(W.sturgeon)用16圈导线制成了第一块电磁铁。

1829年,美因电学家亨利对斯特金电磁铁装置进行了一些革新,绝缘导线代替裸铜导线,因此不必担心被铜导线过分靠近而短路。

由于导线有了绝缘层,就可以将它们一圈圈地紧紧地绕在一起,由于线圈越密集,产生的磁场就越强,这样就大大提高了把电能转化为磁能的能力。

到了1831年,亨利试制出了一块更新的电磁铁,虽然它的体积并不大,但它能吸起1吨重的铁块。

1826年德因G.S欧姐提出电路实验定律一一欧姐定律。

1831年,法拉第发现了电磁感应现象之后不久,他又利用电磁感应发明了世界上第一台真正意义上的电机-法拉第圆盘发电机。

亨利的电动机的重要意义在于这是第一次展示了由磁极排斥和吸引产生的连续运动,是电磁铁在电动机中的真正应用1832年,斯特金发明了换向器,据此对亨利的振荡电动机进行了改进,并制作了世界上第一台能产生连续运动的旋转电动机。

1832年,法国A.H.皮克西在巴黎公开了一台永久磁铁型旋转式交流发电机。

同年,俄籍德国人HF卫.楞次提出电动机一发电机.原理一一楞次定律,证明发电机和电动机是可逆的。

但1870年以前,直流发电机与电动机一直在独立发展着。

1834年,德国的雅可比成了一种简单的装置:

在两个U型电磁铁中间,装一六臂轮,每臂带两根棒型磁铁,通电后,棒型磁铁与U型磁铁之间产生相互吸引和排斥作用,带动轮411转动。

1845年,英国的惠斯通(G.Wheatstone)用电磁铁代替A久磁铁,井取得了专利权。

这是增强发电机输出功率的一个重要措施。

1866年西门子的创始人维尔纳.冯.西门子(WmonSiemens}制成直流白激、并激式发电机。

制成了一架大功率直流电机。

1867年在巴黎世界博览会上展出第一批样机。

这样,西门子就首次完成了把机械能转换成为电能的发明,从而开始了19世纪晚期的“强电”技术时代。

1870年格拉姆(Z.T.Gromme,1826-1901)将T形电枢绕组改为环形电枢绕组,发明了直流发电机,在设计上,直流发电机和电动机很相似。

后来,格拉姆证明向直流发动机输入电流,其转子会象电动机一样旋转。

于是,这种格拉姐型电动机大量制造出来。

效率也不断提高,被人们誉为“发电机之父”。

1873年,英国詹麦克斯韦完成了经典电磁理论基础《电和磁》;电机绕组发展为鼓型绕组,直流电机具备了现代直流电机的基木型式。

●各种马达的认识

1,马达的定义:

“马达”:

为英语motor的音译,即为电动机、发动机。

工作原理为通过通电线圈在磁场中受力转动带动起动机转子旋转,转子上的小齿轮带动发动机飞轮旋转。

马达于1912首次使用在汽车行业。

分类:

1 液压马达:

习惯上是指输出旋转运动的,将液压泵提供的液压能转变为机械能的能量转换装置.

2 高速马达:

齿轮马达具有体积小、重量轻、结构简单、工艺性好、对油液的污染不敏感、耐冲击和惯性小等优点。

缺点有扭矩脉动较大、效率较低、起动扭矩较小(仅为额定扭矩的60%——70%)和低速稳定性差等。

2,直流马达

定义:

直流电机(directcurrentmachine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。

当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。

组成结构:

直流电机的结构应由定子和转子两大部分组成。

直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。

运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。

注解:

其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。

转动部分有环形铁心和绕在环形铁心上的绕组。

(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的)

3,交流马达

“交流电机”:

是用于实现机械能和交流电能相互转换的机械。

由于交流电力系统的巨大发展,交流电机已成为最常用的电机。

交流电机是由美籍塞尔维亚裔科学家尼古拉·特斯拉发明的。

交流电机与直流电机相比,由于没有换向器(见直流电机的换向),因此结构简单,制造方便,比较牢固,容易做成高转速、高电压、大电流、大容量的电机。

交流电机功率的覆盖范围很大,从几瓦到几十万千瓦、甚至上百万千瓦。

4,伺服马达

伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。

伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。

伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。

工作原理:

伺服系统(servomechanism)是使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。

伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。

私服马达结构原理图

 

5,步进马达(Steppermotor)

步进马达是一种将电脉冲转化为角位移的执行机构。

步进马达当步进驱动器接收到一个脉冲信号,步进马达就驱动步进马达按设定的方向转动一个固定的角度(称为“步距角”),步进马达的旋转是以固定的角度一步一步运行的。

步进马达是行业中人士对“步进电机”的另一种称呼,步进马达是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,马达的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给马达加一个脉冲信号,马达则转过一个步距角。

这一线性关系的存在,加上步进马达只有周期性的误差而无累积误差等特点。

(上课反馈:

1,科普知识可重点讲解电动机的工作原理,用图示的方法,或者电磁感应现象的讲解)

二,搭建机器人(40分钟)

搭建躯干和头部,马达编号为1号和4号

参考组装PPT

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1