石材幕墙设计计算书.docx

上传人:b****5 文档编号:12058670 上传时间:2023-04-16 格式:DOCX 页数:29 大小:43.06KB
下载 相关 举报
石材幕墙设计计算书.docx_第1页
第1页 / 共29页
石材幕墙设计计算书.docx_第2页
第2页 / 共29页
石材幕墙设计计算书.docx_第3页
第3页 / 共29页
石材幕墙设计计算书.docx_第4页
第4页 / 共29页
石材幕墙设计计算书.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

石材幕墙设计计算书.docx

《石材幕墙设计计算书.docx》由会员分享,可在线阅读,更多相关《石材幕墙设计计算书.docx(29页珍藏版)》请在冰豆网上搜索。

石材幕墙设计计算书.docx

石材幕墙设计计算书

包头医学院图书馆石材幕墙设计计算书

基本参数:

包头地区基本风压0.500kN/m2

抗震设防烈度8度设计基本地震加速度0.2g

Ⅰ.设计依据:

《建筑结构可靠度设计统一标准》GB50068-2001

《建筑结构荷载规范》GB50009-2001

《建筑抗震设计规范》GB50011-2001

《混凝土结构设计规范》GB50010-2002

《钢结构设计规范》GB50017-2003

《混凝土结构后锚固技术规程》JGJ145-2004

《金属与石材幕墙工程技术规范》JGJ133-2001

《建筑幕墙》JG3035-1996

《紧固件机械性能螺栓、螺钉和螺柱》GB/T3098.1-2000

《建筑结构静力计算手册(第二版)》

《BKCADPM集成系统(BKCADPM2006版)》

Ⅱ.基本计算公式:

(1).场地类别划分:

地面粗糙度可分为A、B、C、D四类:

--A类指近海海面和海岛、海岸、湖岸及沙漠地区;

--B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;

--C类指有密集建筑群的城市市区;

--D类指有密集建筑群且房屋较高的城市市区。

本工程为:

包头东河区烈士陵园北侧,按C类地区计算风荷载。

(2).风荷载计算:

幕墙属于薄壁外围护构件,根据《建筑结构荷载规范》GB50009-2001规定采用

风荷载计算公式:

Wk=βgz×μs×μz×W0(7.1.1-2)

其中:

Wk---垂直作用在幕墙表面上的风荷载标准值(kN/m2);

βgz---高度Z处的阵风系数,按《建筑结构荷载规范》GB50009-2001第7.5.1条取定。

根据不同场地类型,按以下公式计算:

βgz=K(1+2μf)

其中K为地区粗糙度调整系数,μf为脉动系数。

经化简,得:

A类场地:

βgz=0.92×[1+35-0.072×(Z/10)-0.12]

B类场地:

βgz=0.89×[1+(Z/10)-0.16]

C类场地:

βgz=0.85×[1+350.108×(Z/10)-0.22]

D类场地:

βgz=0.80×[1+35^(0.252)×(Z/10)-0.30]

μz---风压高度变化系数,按《建筑结构荷载规范》GB50009-2001第7.2.1条取定。

根据不同场地类型,按以下公式计算:

A类场地:

μz=1.379×(Z/10)0.24

B类场地:

μz=1.000×(Z/10)0.32

C类场地:

μz=0.616×(Z/10)0.44

D类场地:

μz=0.318×(Z/10)0.60

本工程属于C类地区,故μz=0.616(Z/10)0.44

μs---风荷载体型系数,按《建筑结构荷载规范》GB50009-2001第7.3.3条取为:

-1.2

W0---基本风压,按《建筑结构荷载规范》GB50009-2001附表D.4给出的50年一遇的风压采用,但不得小于0.3kN/m2,包头地区取为0.500kN/m2

(3).地震作用计算:

qEAk=βE×αmax×GAK

其中:

qEAk---水平地震作用标准值

βE---动力放大系数,按5.0取定

αmax---水平地震影响系数最大值,按相应抗震设防烈度和设计基本地震加速度取定:

αmax选择可按JGJ102-2003中的表5.3.4进行。

表5.3.4水平地震影响系数最大值αmax

抗震设防烈度

6度

7度

8度

αmax

0.04

0.08(0.12)

0.16(0.24)

注:

7、8度时括号内数值分别用于设计基本地震速度为0.15g和0.30g的地区。

设计基本地震加速度为0.05g,抗震设防烈度6度:

αmax=0.04

设计基本地震加速度为0.10g,抗震设防烈度7度:

αmax=0.08

设计基本地震加速度为0.15g,抗震设防烈度7度:

αmax=0.12

设计基本地震加速度为0.20g,抗震设防烈度8度:

αmax=0.16

设计基本地震加速度为0.30g,抗震设防烈度8度:

αmax=0.24

设计基本地震加速度为0.40g,抗震设防烈度9度:

αmax=0.32

临河设计基本地震加速度为0.15g,抗震设防烈度为7度,故取αmax=0.12

GAK---幕墙构件的自重(N/m2)

(4).作用效应组合:

一般规定,幕墙结构构件应按下列规定验算承载力和挠度:

a.无地震作用效应组合时,承载力应符合下式要求:

γ0S≤R

b.有地震作用效应组合时,承载力应符合下式要求:

SE≤R/γRE

式中S---荷载效应按基本组合的设计值;

SE---地震作用效应和其他荷载效应按基本组合的设计值;

R---构件抗力设计值;

γ0----结构构件重要性系数,应取不小于1.0;

γRE----结构构件承载力抗震调整系数,应取1.0;

c.挠度应符合下式要求:

df≤df,lim

df---构件在风荷载标准值或永久荷载标准值作用下产生的挠度值;

df,lim---构件挠度限值;

d.双向受弯的杆件,两个方向的挠度应分别符合df≤df,lim的规定。

幕墙构件承载力极限状态设计时,其作用效应的组合应符合下列规定:

1.有地震作用效应组合时,应按下式进行:

S=γGSGK+γwψwSWK+γEψESEK

2.无地震作用效应组合时,应按下式进行:

S=γGSGK+ψwγwSWK

S---作用效应组合的设计值;

SGk---永久荷载效应标准值;

SWk---风荷载效应标准值;

SEk---地震作用效应标准值;

γG---永久荷载分项系数;

γW---风荷载分项系数;

γE---地震作用分项系数;

ψW---风荷载的组合值系数;

ψE---地震作用的组合值系数;

进行幕墙构件的承载力设计时,作用分项系数,按下列规定取值:

①一般情况下,永久荷载、风荷载和地震作用的分项系数γG、γW、γE应分别取1.2、1.4和1.3;

②当永久荷载的效应起控制作用时,其分项系数γG应取1.35;此时,参与组合的可变荷载效应仅限于竖向荷载效应;

③当永久荷载的效应对构件利时,其分项系数γG的取值不应大于1.0。

可变作用的组合系数应按下列规定采用:

①一般情况下,风荷载的组合系数ψW应取1.0,地震作用于的组合系数ψE应取0.5。

②幕墙构件的挠度验算时,风荷载分项系数γW和永久荷载分项系数均应取1.0,且可不考虑作用效应的组合。

Ⅲ.材料力学性能:

(1).钢材的强度设计值应按现行国家标准《钢结构设计规范》GB50017-2003的规定采用,也可按表5.2.3采用。

表5.2.3钢材的强度设计值fs(N/mm2)

钢材牌号

厚度或直径d(mm)

抗拉、抗压、抗弯

抗剪

端面承压

Q235

d≤16

215

125

325

16<d≤40

205

120

40<d≤60

200

115

Q345

d≤16

310

180

400

16<d≤35

295

170

35<d≤50

265

155

注:

表中厚度是指计算点的钢材厚度;对轴心受力杆件是指截面中较厚钢板的厚度.

室内墙面、圆柱不计算。

设计材料验算:

墙体连接螺栓¢12X110;后置件口200X100X8或200X100X6;牛腿[8;立柱[6.3;横龙骨L50X5;不锈钢挂件50X5X80或40X4X80;不锈钢连接螺栓¢10X35。

一、风荷载计算

本工程最高标高为4.5m,石材按总高度4.5m以最不利因素计算。

(1).风荷载标准值计算:

W0:

基本风压

W0=0.50kN/m2

βgz:

4.5m高处阵风系数(按C类地区计算)

βgz=0.85×[1+(Z/10)-0.16]=0.664

μz:

4.5m高处风压高度变化系数(按C类区计算):

(GB50009-2001)

μz=(Z/10)0.32

=(4.5/10)0.32=0.144

μs:

风荷载体型系数

μs=-1.20

Wk=βgz×μz×μs×W0(GB50009-2001)

=0.664×0.144×1.2×0.500

=0.057kN/m2

(2).风荷载设计值:

W:

风荷载设计值(kN/m2)

γw:

风荷载作用效应的分项系数:

1.4

按《建筑结构荷载规范》GB50009-20013.2.5规定采用

W=γw×Wk=1.4×0.057=0.079kN/m2

二、板强度校核:

1.石材强度校核(按常规最大规格最不利因素计算)

设计石材,其抗弯强度标准值为:

17.0N/mm2

石材抗弯强度设计值:

8.00N/mm2

石材抗剪强度设计值:

4.00N/mm2

校核依据:

σ≤[σ]=8.000N/mm2

Ao:

石板短边长:

1.050m

Bo:

石板长边长:

1.100m

a:

计算石板抗弯所用短边长度:

0.3m实际使用宽度

b:

计算石板抗弯所用长边长度:

0.6m实际使用长度

t:

石材厚度:

60mm

GAK:

石板自重=1680.00N/mm2

m1:

四角支承板弯矩系数,按短边与长边的边长比(a/b=0.950)

查表得:

0.1494

Wk:

风荷载标准值:

0.057kN/m2

垂直于平面的分布水平地震作用:

qEAk:

垂直于幕墙平面的分布水平地震作用(kN/m2)

qEAk=5×αmax×GAK

=5×0.057×1680.000/1000

=0.478kN/m2

荷载组合设计值为:

Sz=1.4×Wk+1.3×0.5×qEAk

=0.389kN/m2

应力设计值为:

σ=6×m1×Sz×b2×103/t2

=6×0.1494×0.389×1.0002×103/25.02

=0.558N/mm2

0.558N/mm2≤8.000N/mm2石材抗弯强度完全满足要求

2.石材剪应力校核

校核依据:

τmax≤[τ]

τ:

石板中产生的剪应力设计值(N/mm2)

n:

一个连接边上的挂钩数量:

2

t:

石板厚度:

60.0mm

d:

槽宽:

7.0mm

s:

槽底总长度:

60.0mm

β:

系数,取1.30

两边开槽

τ=Sz×(2Bo-Ao)×Ao×β×1000/[2n×(t-d)×s]

=0.002N/mm2

0.002N/mm2≤4.000N/mm2

石材抗剪强度完全可以满足

3.挂钩剪应力校核

校核依据:

τmax≤[τ]

τ:

挂钩剪应力设计值(N/mm2)

Ap:

挂钩截面面积:

19.600mm2

n:

一个连接边上的挂钩数量:

2

四边开槽

τ=Sz×(2Bo-Ao)×Ao×β×1000/(4×n×Ap)

=23.743N/mm2

23.743N/mm2≤125.000N/mm2

不锈钢挂件抗剪强度完全可以满足

三、幕墙立柱计算:

幕墙立柱按双跨梁力学模型进行设计计算:

1.荷载计算:

(1)风荷载均布线荷载设计值(矩形分布)

qw:

风荷载均布线荷载设计值(kN/m)

W:

风荷载设计值:

2.044kN/m2

B:

幕墙分格宽:

0.900m

qw=W×B

=2.044×0.900

=1.839kN/m

(2)立柱弯矩:

立柱的受力如图所示。

Mw:

风荷载作用下立柱弯矩(kN.m)

qw:

风荷载均布线荷载设计值:

1.839(kN/m)

Hsjcg:

立柱计算跨度:

2.250m(按最不利上下圈梁固定连接计算)

Mw=qw×(L13+L23)/8/(L1+L2)

=(1.8003+0.4503)/8/(1.800+0.450)×1.839

=0.334kN·m

qEA:

地震作用设计值(KN/m2):

垂直于幕墙平面的均布水平地震作用标准值:

qEAk:

垂直于幕墙平面的均布水平地震作用标准值(kN/m2)

qEAk=5×αmax×GAk

=5×0.120×700.000/1000

=0.420kN/m2

γE:

幕墙地震作用分项系数:

1.3

qEA=1.3×qEAk

=1.3×0.420

=0.546kN/m2

qE:

水平地震作用均布线作用设计值(矩形分布)

qE=qEA×B

=0.546×0.800

=0.437kN/m

ME:

地震作用下立柱弯矩(kN·m):

ME=qE×(L13+L23)/8/(L1+L2)

=(1.8003+0.4503)/8/(1.800+0.450)×0.437

=0.240kN·m

M:

幕墙立柱在风荷载和地震作用下产生弯矩(kN·m)

采用SW+0.5SE组合

M=Mw+0.5×ME

=0.334+0.5×0.240

M:

幕墙立柱在风荷载作用下产生弯矩(kN·m)

=0.454kN·m

2.选用立柱型材的截面特性:

立柱型材号:

XC1\63#槽钢

选用的立柱材料牌号:

Q235d<=16

型材强度设计值:

抗拉、抗压215.000N/mm2抗剪125.0N/mm2

型材弹性模量:

E=2.10×105N/mm2

X轴惯性矩:

Ix=51.822cm4

Y轴惯性矩:

Iy=11.890cm4

立柱型材在弯矩作用方向净截面抵抗矩:

Wn=16.300cm3

立柱型材净截面积:

An=9.263cm2

立柱型材截面垂直于X轴腹板的截面总宽度:

LT_x=6.000mm

立柱型材计算剪应力处以上(或下)截面对中和轴的面积矩:

Ss=13.586cm3

塑性发展系数:

γ=1.05

3.幕墙立柱的强度计算:

校核依据:

N/An+M/(γ×Wn)≤fa=215.0N/mm2(拉弯构件)

B:

幕墙分格宽:

0.900m

幕墙自重线荷载:

Gk=700×B/1000

=700×0.900/1000

=0.630kN/m

Nk:

立柱受力:

Nk=Gk×L

=0.630×1.800

=1.134kN

N:

立柱受力设计值:

rG:

结构自重分项系数:

1.2

N=1.2×Nk

=1.2×1.134

=1.360kN

σ:

立柱计算强度(N/mm2)(立柱为拉弯构件)

N:

立柱受力设计值:

1.360KN

An:

立柱型材净截面面积:

9.263cm2

M:

立柱弯矩:

0.454kN·m

Wn:

立柱在弯矩作用方向净截面抵抗矩:

16.300cm3

γ:

塑性发展系数:

1.05

σ=N×10/An+M×103/(1.05×Wn)

=1.360×10/9.263+0.454×103/(1.05×16.300)

=27.994N/mm2

27.994N/mm2<fa=215.0N/mm2

立柱强度完全可以满足

4.幕墙立柱的刚度计算:

校核依据:

df≤L/250

df:

立柱最大挠度

df=1000×[1.4355×1.499-0.409×qWk×L1]×L13/(24×2.1×Ix)=7.884mm

Du:

立柱最大挠度与其所在支承跨度(支点间的距离)比值:

Lt1:

立柱最大挠度所在位置支承跨度(支点间的距离)2.250m

Du=U/(Lt1×1000)

=7.884/(2.250×1000)

=1/350

1/350<1/250

挠度完全可以满足要求!

5.立柱抗剪计算:

校核依据:

τmax≤[τ]=125.0N/mm2

(1)Qwk:

风荷载作用下剪力标准值(kN)

R0:

双跨梁长跨端支座反力为:

1.499KN

Ra:

双跨梁中间支座反力为:

4.669KN

Rb:

双跨梁短跨端支座反力为:

-1.613KN

Rc:

中间支承处梁受到的最大剪力(KN)

=2.373KN

Qwk=2.373KN

(2)Qw:

风荷载作用下剪力设计值(kN)

Qw=1.4×Qwk

=1.4×2.373

=3.322kN

(3)QEk:

地震作用下剪力标准值(kN)

R0_e:

双跨梁长跨端支座反力为:

0.431KN

Ra_e:

双跨梁中间支座反力为:

1.343KN

Rb_e:

双跨梁短跨端支座反力为:

-0.464KN

Rc:

中间支承处梁受到的最大剪力(KN)

=4.262KN

QEk=4.262KN

(4)QE:

地震作用下剪力设计值(kN)

QE=1.3×QEk

=1.3×4.262

=5.540kN

(5)Q:

立柱所受剪力:

采用Qw+0.5QE组合

Q=Qw+0.5×QE

=3.322+0.5×5.540

=6.092kN

(6)立柱剪应力:

τ:

立柱剪应力:

Ss:

立柱型材计算剪应力处以上(或下)截面对中和轴的面积矩:

13.586cm3

立柱型材截面垂直于X轴腹板的截面总宽度:

LT_x=6.000mm

Ix:

立柱型材截面惯性矩:

51.822cm4

τ=Q×Ss×100/(Ix×LT_x)

=6.092×13.586×100/(51.822×6.000)

=26.616N/mm2

τ=26.616N/mm2<125.0N/mm2

立柱抗剪强度完全可以满足

四、立柱与主结构连接

Lct2:

连接处钢角码壁厚:

6.0mm(后置埋件按最不利因素6.00mm厚计算)

Jy:

连接处钢角码承压强度:

305.0N/mm2

D2:

连接螺栓公称直径:

10.0mm

D0:

连接螺栓有效直径:

8.6mm

选择的立柱与主体结构连接螺栓为:

普通螺栓4.6级

L_L:

连接螺栓抗拉强度:

170N/mm2

L_J:

连接螺栓抗剪强度:

140N/mm2

采用SG+SW+0.5SE组合

N1wk:

连接处风荷载总值(N):

N1wk=Wk×B×Hsjcg×1000

=0.057×0.900×2.250×1000

=115.425N

因为N1wk=115.425N,小于在风荷载作用下中间支座反力Ra=4669.2N

连接处风荷载设计值(N):

N1w=1.4×N1wk

=1.4×4669.2

=6536.8N

N1Ek:

连接处地震作用(N):

N1Ek=qEAk×B×Hsjcg×1000

=0.420×0.900×2.250×1000

=850.500N

因为N1Ek=850.500N,小于在地震作用下中间支座反力Ra_e=1343.2N

N1E:

连接处地震作用设计值(N):

N1E=1.3×N1Ek

=1.3×1343.2

=1746.1N

N1:

连接处水平总力(N):

N1=N1w+0.5×N1E

=6536.8+0.5×1746.1

=7409.9N

N2:

连接处自重总值设计值(N):

N2k=700×B×Hsjcg

=700×0.900×2.250

=1417.500N

N2:

连接处自重总值设计值(N):

N2=1.2×N2k

=1.2×1417.500

=1701.000N

N:

连接处总合力(N):

N=(N12+N22)0.5

=(7409.92+1417.502)0.5

=2009.306N

Nvb:

螺栓的受剪承载能力:

Nv:

螺栓受剪面数目:

2(后置埋件使用螺栓¢12X110)

Nvb=2×π×D02×L_J/4

=2×3.14×8.6002×140/4

=16256.4N

立柱型材种类:

Q235d<=16

Ncbl:

用一颗螺栓时,立柱型材壁抗承压能力(N):

D2:

连接螺栓直径:

10.000mm

Nv:

连接处立柱承压面数目:

2

t:

立柱壁厚:

4.0mm

XC_y:

立柱局部承压强度:

325.0N/mm2

Ncbl=D2×t×2×XC_y

=10.000×4.0×2×325.0

=26000.0N

Num1:

立柱与建筑物主结构连接的螺栓个数:

计算时应取螺栓受剪承载力和立柱型材承压承载力设计值中的较小者计算螺栓个数。

螺栓的受剪承载能力Nvb=16256.4N小于或等于立柱型材承压承载力Ncbl=26000.0N

Num1=N/Nvb

=2009.306/16256.4

=0.12个

取2个螺栓完全满足承载要求

根据选择的螺栓数目,计算螺栓的受剪承载能力Nvb=16256.4N

根据选择的螺栓数目,计算立柱型材承压承载能力Ncbl=26000.0N

Nvb=16256.4N>2009.306N

Ncbl=26000.0N>2009.306N

强度完全可以满足

五、幕墙预埋件总截面面积计算

本工程预埋件受拉力和剪力(按后置埋件最不利6mm计算)

V:

剪力设计值:

V=N2

=2620.8N

N:

法向力设计值:

N=N1

=7409.9N

M:

弯矩设计值(N·mm):

e2:

螺孔中心与锚板边缘距离:

10.0mm

M=V×e2

=2620.8×10.0

=26208.0N·mm

Num1:

锚筋根数:

2根

锚筋层数:

2层

αr:

锚筋层数影响系数:

1.0

关于混凝土:

强度等级C30

混凝土轴心抗压强度设计值:

fc=14.300N/mm2

按现行国家标准≤混凝土结构设计规范≥GB50010-2002表4.1.4采用。

选用HPB235螺栓

螺栓强度设计值:

fy=210.000N/mm2

d:

钢筋直径:

Φ12.0mm

αv:

钢筋受剪承载力系数:

αv=(4.0-0.08×d)×(fc/fy)0.5依据GB5001010.9.1-5式计算

=(4.0-0.08×12.000)×(14.300/210.000)0.5

=0.8

因为αv大于0.7,所以取αv=0.7

t:

锚板厚度:

6.0mm

αb:

锚板弯曲变形折减系数:

αb=0.6+0.25×(t/d)依据GB5001010.9.1-6式计算

=0.6+0.25×(6.0/12.000)

=0.725

Z:

外层钢筋中心线距离:

180.0mm

As:

锚筋实际总截面积:

As=Num1×π×d2/4

=2.000×3.14×d2/2

=452.16mm2

锚筋的总截面积计算值:

依据GB5001010.9.1-1和10.9.1-2等公式计算

As1=V/(αr×αv×fy)+N/(0.8×αb×fy)+M/(1.3×αr×αb×fy×Z)

=82.3mm2

As2=N/(0.8×αb×fy)+M/(0.4×αr×αb×fy×Z)

=80.1mm2

82.3mm2<452.16mm2

80.1mm2<452.16mm2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 笔试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1