④等腰三角形的三角关系:
设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
2、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:
等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
推论1:
三个角都相等的三角形是等边三角形
推论2:
有一个角是60°的等腰三角形是等边三角形。
推论3:
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等腰三角形的性质与判定
等腰三角形性质
等腰三角形判定
中线
1、等腰三角形底边上的中线垂直底边,平分顶角;
2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;
2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形
角平分线
1、等腰三角形顶角平分线垂直平分底边;
2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;
2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线
1、等腰三角形底边上的高平分顶角、平分底边;
2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;
2、有两条高相等的三角形是等腰三角形。
角
等边对等角
等角对等边
边
底的一半<腰长<周长的一半
两边相等的三角形是等腰三角形
六、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:
三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:
可以证明两条直线平行。
数量关系:
可以证明线段的倍分关系。
常用结论:
任一个三角形都有三条中位线,由此有:
结论1:
三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:
三条中位线将原三角形分割成四个全等的三角形。
结论3:
三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:
三角形一条中线和与它相交的中位线互相平分。
结论5:
三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
第十四章整式乘除与因式分解
一.回顾知识点
1、主要知识回顾:
幂的运算性质:
am·an=am+n(m、n为正整数)
同底数幂相乘,底数不变,指数相加.
=amn(m、n为正整数)
幂的乘方,底数不变,指数相乘.
(n为正整数)
积的乘方等于各因式乘方的积.
=am-n(a≠0,m、n都是正整数,且m>n)
同底数幂相除,底数不变,指数相减.
零指数幂的概念:
a0=1(a≠0)
任何一个不等于零的数的零指数幂都等于l.
负指数幂的概念:
a-p=
(a≠0,p是正整数)
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.
也可表示为:
(m≠0,n≠0,p为正整数)
单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:
对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:
(a+b)(a-b)=a2-b2
文字语言叙述:
两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:
两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能分解为止.
弄清因式分解与整式乘法的内在的关系.
因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:
①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;
(3)提公因式法的步骤:
第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.
(4)注意点:
①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.
2、公式法
运用公式法分解因式的实质是把整式中的乘法公式反过来使用;
常用的公式:
①平方差公式:
a2-b2=(a+b)(a-b)
②完全平方公式:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
3.十字相乘法
第十五章分式
知识点一:
分式的定义
一般地,如果A,B表示两个整数,并且B中含有字母,那么式子
叫做分式,A为分子,B为分母。
知识点二:
与分式有关的条件
分式有意义:
分母不为0(
)
分式无意义:
分母为0(
)
分式值为0:
分子为0且分母不为0(
)
分式值为正或大于0:
分子分母同号(
或
)
分式值为负或小于0:
分子分母异号(
或
)
分式值为1:
分子分母值相等(A=B)
分式值为-1:
分子分母值互为相反数(A+B=0)
知识点三:
分式的基本性质
分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:
,
,其中A、B、C是整式,C
0。
拓展:
分式的符号法则:
分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即
注意:
在应用分式的基本性质时,要注意C
0这个限制条件和隐含条件B
0。
知识点四:
分式的约分
定义:
根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
步骤:
把分式分子分母因式分解,然后约去分子与分母的公因。
注意:
①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。
最简分式的定义:
一个分式的分子与分母没有公因式时,叫做最简分式。
知识点五:
分式的通分
1分式的通分:
根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
2分式的通分最主要的步骤是最简公分母的确定。
最简公分母的定义:
取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
确定最简公分母的一般步骤:
Ⅰ取各分母系数的最小公倍数;
Ⅱ单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;
Ⅲ相同字母(或含有字母的式子)的幂的因式取指数最大的。
Ⅳ保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。
注意:
分式的分母为多项式时,一般应先因式分解。
知识点六:
分式的四则运算与分式的乘方
1分式的乘除法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:
分式除以分式:
把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为
2分式的乘方:
把分子、分母分别乘方。
式子
3分式的加减法则:
同分母分式加减法:
分母不变,把分子相加减。
式子表示为
异分母分式加减法:
先通分,化为同分母的分式,然后再加减。
式子表示为
整式与分式加减法:
可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。
4分式的加、减、乘、除、乘方的混合运算的运算顺序
先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。
注意:
在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。
加减后得出的结果一定要化成最简分式(或整式)。
知识点八:
整数指数幂
1引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。
即
(
)
(
)(任何不等于零的数的零次幂都等于1)
其中m,n均为整数。
科学记数法
7个0
若一个数x是0(
,即a的整数部分只有一位,n为整数)的形式,n的确定n=从左边第一个0起到第一个不为0的数为止所有的0的个数的相反数。
如0.000000125=
9个数字
若一个数x是x>10的数则可以表示为
(
,即a的整数部分只有一位,n为整数)的形式,n的确定n=比整数部分的数位的个数少1。
如120000000=
知识点七:
分式方程的解的步骤
去分母,把方程两边同乘以各分母的最简公分母。
(产生增根的过程)
解整式方程,得到整式方程的解。
检验,把所得的整式方程的解代入最简公分母中:
如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
产生增根的条件是:
①是得到的整式方程的解;②代入最简公分母后值为0。
知识点八列分式方程
基本步骤
1审—仔细审题,找出等量关系。
2设—合理设未知数。
3列—根据等量关系列出方程(组)。
4解—解出方程(组)。
注意检验
5答—答题。