八年级上册第十二章至第十五章知识要点.docx

上传人:b****4 文档编号:12056709 上传时间:2023-04-16 格式:DOCX 页数:17 大小:94.77KB
下载 相关 举报
八年级上册第十二章至第十五章知识要点.docx_第1页
第1页 / 共17页
八年级上册第十二章至第十五章知识要点.docx_第2页
第2页 / 共17页
八年级上册第十二章至第十五章知识要点.docx_第3页
第3页 / 共17页
八年级上册第十二章至第十五章知识要点.docx_第4页
第4页 / 共17页
八年级上册第十二章至第十五章知识要点.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

八年级上册第十二章至第十五章知识要点.docx

《八年级上册第十二章至第十五章知识要点.docx》由会员分享,可在线阅读,更多相关《八年级上册第十二章至第十五章知识要点.docx(17页珍藏版)》请在冰豆网上搜索。

八年级上册第十二章至第十五章知识要点.docx

八年级上册第十二章至第十五章知识要点

第十二章全等三角形

一、全等三角形

能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形。

2、全等三角形有哪些性质

(1):

全等三角形的对应边相等、对应角相等。

(2):

全等三角形的周长相等、面积相等。

(3):

全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定

边边边:

三边对应相等的两个三角形全等(可简写成“SSS”)

边角边:

两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)

角边角:

两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)

角角边:

两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)

斜边.直角边:

斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)

4、证明两个三角形全等的基本思路:

二、角的平分线:

1、(性质)角的平分线上的点到角的两边的距离相等.

2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:

(1):

要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;

(2):

表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;

(3):

“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;

(4):

时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”

1、全等三角形的概念

能够完全重合的两个图形叫做全等形。

能够完全重合的两个三角形叫做全等三角形。

两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。

2、全等三角形的表示和性质

全等用符号“≌”表示,读作“全等于”。

如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

注:

记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、三角形全等的判定

三角形全等的判定定理:

(1)边角边定理:

有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

(2)角边角定理:

有两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)

(3)边边边定理:

有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。

直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):

有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

4、全等变换

只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。

全等变换包括一下三种:

(1)平移变换:

把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:

将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:

将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。

第十二章轴对称

一、轴对称图形

1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴。

折叠后重合的点是对应点,叫做对称点

4.轴对称的性质

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线

1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等

3.与一条线段两个端点距离相等的点,在线段的垂直平分线上

三、用坐标表示轴对称小结:

在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.

点(x,y)关于x轴对称的点的坐标为______.

点(x,y)关于y轴对称的点的坐标为______.

2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等

四、(等边三角形)知识点回顾

1.等边三角形的性质:

等边三角形的三个角都相等,并且每一个角都等于600。

2、等边三角形的判定:

①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

五、(等腰三角形)知识点回顾

1、等腰三角形的性质

(1)等腰三角形的性质定理及推论:

定理:

等腰三角形的两个底角相等(简称:

等边对等角)

推论1:

等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:

等边三角形的各个角都相等,并且每个角都等于60°。

(2)等腰三角形的其他性质:

①等腰直角三角形的两个底角相等且等于45°

②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:

设腰长为a,底边长为b,则

④等腰三角形的三角关系:

设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

2、等腰三角形的判定

等腰三角形的判定定理及推论:

定理:

如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:

等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

推论1:

三个角都相等的三角形是等边三角形

推论2:

有一个角是60°的等腰三角形是等边三角形。

推论3:

在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

等腰三角形的性质与判定

等腰三角形性质

等腰三角形判定

中线

1、等腰三角形底边上的中线垂直底边,平分顶角;

2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;

2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

角平分线

1、等腰三角形顶角平分线垂直平分底边;

2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线

1、等腰三角形底边上的高平分顶角、平分底边;

2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

2、有两条高相等的三角形是等腰三角形。

等边对等角

等角对等边

底的一半<腰长<周长的一半

两边相等的三角形是等腰三角形

六、三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:

三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

位置关系:

可以证明两条直线平行。

数量关系:

可以证明线段的倍分关系。

常用结论:

任一个三角形都有三条中位线,由此有:

结论1:

三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:

三条中位线将原三角形分割成四个全等的三角形。

结论3:

三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:

三角形一条中线和与它相交的中位线互相平分。

结论5:

三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

第十四章整式乘除与因式分解

一.回顾知识点

1、主要知识回顾:

幂的运算性质:

am·an=am+n(m、n为正整数)

同底数幂相乘,底数不变,指数相加.

=amn(m、n为正整数)

幂的乘方,底数不变,指数相乘.

(n为正整数)

积的乘方等于各因式乘方的积.

=am-n(a≠0,m、n都是正整数,且m>n)

同底数幂相除,底数不变,指数相减.

零指数幂的概念:

a0=1(a≠0)

任何一个不等于零的数的零指数幂都等于l.

负指数幂的概念:

a-p=

(a≠0,p是正整数)

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.

也可表示为:

(m≠0,n≠0,p为正整数)

单项式的乘法法则:

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

单项式与多项式的乘法法则:

单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

单项式的除法法则:

单项式相除,把系数、同底数幂分别相除,作为商的因式:

对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

多项式除以单项式的法则:

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

 2、乘法公式:

①平方差公式:

(a+b)(a-b)=a2-b2

文字语言叙述:

两个数的和与这两个数的差相乘,等于这两个数的平方差.

②完全平方公式:

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

文字语言叙述:

两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

 3、因式分解:

因式分解的定义.

把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

掌握其定义应注意以下几点:

(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

(2)因式分解必须是恒等变形;

(3)因式分解必须分解到每个因式都不能分解为止.

弄清因式分解与整式乘法的内在的关系.

因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.

 二、熟练掌握因式分解的常用方法.

1、提公因式法

(1)掌握提公因式法的概念;

(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:

①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

(3)提公因式法的步骤:

第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

(4)注意点:

①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

2、公式法

运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

常用的公式:

①平方差公式:

a2-b2=(a+b)(a-b)

②完全平方公式:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

3.十字相乘法

 

第十五章分式

知识点一:

分式的定义

一般地,如果A,B表示两个整数,并且B中含有字母,那么式子

叫做分式,A为分子,B为分母。

知识点二:

与分式有关的条件

分式有意义:

分母不为0(

分式无意义:

分母为0(

分式值为0:

分子为0且分母不为0(

分式值为正或大于0:

分子分母同号(

分式值为负或小于0:

分子分母异号(

分式值为1:

分子分母值相等(A=B)

分式值为-1:

分子分母值互为相反数(A+B=0)

知识点三:

分式的基本性质

分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:

,其中A、B、C是整式,C

0。

拓展:

分式的符号法则:

分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即

注意:

在应用分式的基本性质时,要注意C

0这个限制条件和隐含条件B

0。

知识点四:

分式的约分

定义:

根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

步骤:

把分式分子分母因式分解,然后约去分子与分母的公因。

注意:

①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

最简分式的定义:

一个分式的分子与分母没有公因式时,叫做最简分式。

知识点五:

分式的通分

1分式的通分:

根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

2分式的通分最主要的步骤是最简公分母的确定。

最简公分母的定义:

取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

确定最简公分母的一般步骤:

Ⅰ取各分母系数的最小公倍数;

Ⅱ单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;

Ⅲ相同字母(或含有字母的式子)的幂的因式取指数最大的。

Ⅳ保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。

注意:

分式的分母为多项式时,一般应先因式分解。

知识点六:

分式的四则运算与分式的乘方

1分式的乘除法法则:

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

式子表示为:

分式除以分式:

把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为

2分式的乘方:

把分子、分母分别乘方。

式子

3分式的加减法则:

同分母分式加减法:

分母不变,把分子相加减。

式子表示为

异分母分式加减法:

先通分,化为同分母的分式,然后再加减。

式子表示为

整式与分式加减法:

可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

4分式的加、减、乘、除、乘方的混合运算的运算顺序

先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。

注意:

在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。

加减后得出的结果一定要化成最简分式(或整式)。

知识点八:

整数指数幂

1引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。

)(任何不等于零的数的零次幂都等于1)

其中m,n均为整数。

科学记数法

7个0

若一个数x是0

,即a的整数部分只有一位,n为整数)的形式,n的确定n=从左边第一个0起到第一个不为0的数为止所有的0的个数的相反数。

如0.000000125=

9个数字

若一个数x是x>10的数则可以表示为

,即a的整数部分只有一位,n为整数)的形式,n的确定n=比整数部分的数位的个数少1。

如120000000=

知识点七:

分式方程的解的步骤

去分母,把方程两边同乘以各分母的最简公分母。

(产生增根的过程)

解整式方程,得到整式方程的解。

检验,把所得的整式方程的解代入最简公分母中:

如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:

①是得到的整式方程的解;②代入最简公分母后值为0。

知识点八列分式方程

基本步骤

1审—仔细审题,找出等量关系。

2设—合理设未知数。

3列—根据等量关系列出方程(组)。

4解—解出方程(组)。

注意检验

5答—答题。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 唐诗宋词

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1