同步发电机励磁系统实验研究ok讲解.docx

上传人:b****5 文档编号:11980113 上传时间:2023-04-16 格式:DOCX 页数:36 大小:178.53KB
下载 相关 举报
同步发电机励磁系统实验研究ok讲解.docx_第1页
第1页 / 共36页
同步发电机励磁系统实验研究ok讲解.docx_第2页
第2页 / 共36页
同步发电机励磁系统实验研究ok讲解.docx_第3页
第3页 / 共36页
同步发电机励磁系统实验研究ok讲解.docx_第4页
第4页 / 共36页
同步发电机励磁系统实验研究ok讲解.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

同步发电机励磁系统实验研究ok讲解.docx

《同步发电机励磁系统实验研究ok讲解.docx》由会员分享,可在线阅读,更多相关《同步发电机励磁系统实验研究ok讲解.docx(36页珍藏版)》请在冰豆网上搜索。

同步发电机励磁系统实验研究ok讲解.docx

同步发电机励磁系统实验研究ok讲解

 

电力系统自动装置

 

题目:

基于同步发电机励磁系统的工作原理

 

班级:

B140431

学号:

B14043115

姓名:

李梦阳

日期:

2015年12月25日

摘要

同步发电机励磁系统对电力系统的可靠性和稳定性起着重要作用,在我国,励磁系统的可靠性和技术性能指标还不能令人满意。

除了制作水平的提高外,利用特殊的动态测试设备在设计、生产、运行、维护等各个阶段对励磁系统进行设计验证和动态性能测试,是提高励磁系统可靠性和技术性能指标的重要手段。

随着计算机技术的发展,数字仿真测试技术在电力系统研究领域正起着越来越重要的作用。

因此研究采用数字仿真测试技术对同步发电机励磁系统进行动态性能测试,对提高励磁系统的可靠性和技术指标有着重要意义。

关键词:

同步发电机,励磁系统,数字仿真

Abstract

Theexcitationsystemofsynchronousgeneratorplaysanimportantroleinreliabilityandstabilityofpowersystem.However,thereliabilityofcurrentexcitationsysteminChinaisnotverysatisfactory.Toimprovethereliabilityandperformanceofexcitationsystem,inadditiontoenhancingthefabricationtechnology,itiscriticaltoconductdesignverifyinganddynamicperformancetestingatthestagesofdesign,manufacture,runandmaintenancewithspecialdynamictestingdevices.Withtherapiddevelopmentofcomputerscienceandtechnology,digitalsimulationtestingisbecomingmoreandmoreimportantinPowerSystemresearchfield.Adoptingdigitalsimulationtestingtechnologyinthedynamicperformancetestingofsynchronousgeneratorexcitationsystemshasagreatsignificanceinimprovingthereliabilityandperformanceofanexcitationsystem.

Keyword:

SynchronousGenerator,ExcitationSystem,digitalsimulation

 

 

第1章绪论

1.1课题的研究背景和意义

1.1.1课题研究的背景意义

近年来,随着发电机容量的不断增大,远方水电厂到负荷中心的长距离输电线路的出现,这时,发电机间的联系变得比较松散,就出现了输送功率的极限问题。

特别是在发生故障的情况下,有可能使发电机失去同步。

另一方面,随着大规模联合电力系统的出现,系统的结构和运行方式越来越复杂多变,这就增加了发生系统性事故和导致大面积停电的几率。

电力系统稳定破坏事故是电力系统各种事故中涉及面最广、后果最严重的事故之一。

因此,电力系统的稳定性问题历来为世界各国所普遍关注。

在当前,为提高电力系统稳定性而采取的措施中,励磁控制有明显的作用。

在诸多改善发电机稳定性的措施中,提高励磁系统的控制性能,被公认为是最有效和最经济的措施之一。

励磁控制系统是同步发电机的重要组成部分,它的特性好坏直接影响到同步发电机运行的可靠性与稳定性。

励磁的主要任务是根据发电机的运行状况,向发电机的励磁绕组提供一个可调的直流电流,以满足发电机的运行需要。

同步发电机的励磁系统一般由两部分组成。

一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称为励磁功率输出部分(或称为功率单元)。

另一部分用于在正常运行或发生事故时调节励磁电流的大小,以满足运行需要,一般称为励磁控制部分(或称控制单元,或统称为励磁调节器)

目前,励磁系统测试在国内仍然采用比较落后的手段,一种方法是采用独立于励磁和发电机系统的试验测试装置,使用万用表,示波器等常用仪器在现场真实机组上完成励磁系统的静态、动态试验,检验其性能,过程中甚至由人工来读数,记录,分析,制表。

因此存在测试周期长,测试精度低及人工强度大等缺点,且对机组有损害。

另一种方法是采用嵌入到控制器的测试软件,在机组运行过程中实现数据采集并分析处理,完成励磁系统的测试,这种方法对机组也有损害。

与励磁调节器的自动化程度相适应,对励磁调节系统试验的要求也随之提高。

目前传统的试验测试装置已很难对励磁系统的特性进行全面的测试,难于适应现代技术发展的需要。

因此研制功能齐全,具有等效控制对象模型、操作方便的新型励磁测试系统实现动态测试势在必行

1.1.2课题研究的发展趋势

整个励磁控制系统的发展包括两个方面:

一是主励磁系统本身即励磁方式的改进与发展:

另一个方面是励磁调节器即励磁控制方式的改进与发展,当然这两个方面的发展是互有关联的。

1960年以来,随着电子技术的发展,太功率可控硅整流装置的出现,取代了在运行中弊端百出的直流励磁机系统,出现了交流励磁机励磁方式(有刷励磁方式和无刷励磁方式)。

从上世纪七、八十年代以来,自励方式得到广泛的研究与应用,其中自并励励磁方式受到了越来越多的关注。

,由于自并励励磁方式的种种优点,它己逐渐成为一种发展的趋势。

有资料表明,只要合理解决好自并励励磁方式自身所存在的一些问题,它可以被应用于包括水电、火电、核电在内的绝大多数发电机组。

励磁控制方式的发展大致经历了三个发展阶段。

在第一阶段中主要采用的是按发电机端电压的偏差△y进行比例式调节的方式,以及后来出现的PID励磁控制方式。

在第二阶段中,电力系统稳定器PSS(powersystemstabilizer)最具代表性,它是在第一阶段发展的基础上,采用机端电压的频率,,或机组转速m,亦或是发电机电磁功率尸作为辅助输入量的L种方式,用以抑制由于励磁系统和发电机绕组的滞后特性所产生的低频振荡,从而提高电力系统的动态稳定性。

第三阶段是随着现代控制理论的发展,出现的线性最优励磁控制方式,非线性最优励磁控制方式,智能控制方式以及基于大系统理论的分散与协调控制方式等。

1.2同步发电机励磁系统的主要任务

励磁系统是同步发电机的重要组成部分,对发电机的运行可靠性、经济性及其它特性有直接的影响。

它的主要作用有:

1.正常运行时供给发电机励磁电源,并根据发电机负载的变化作相应调整,以维持发电机端电压或电网中某一点电压在给定水平上。

当发电机突然甩负荷时,实行强行减磁以限制其端电压,使其不会过度升高。

此外,当几台发电机并联运行时,通过励磁系统的作用可使无功功率在机组间得到稳定和合理的分配。

2.通过灵敏而又快速的励磁调节,提高电力系统运行的静态稳定和输电线路的传输能力。

当电力系统发生短路或因其它原因使系统电压严重下降时,对发电机实行强行励磁,以提高电力系统的动态稳定。

如果发电机内部发生短路故障,则对发电机实行自动灭磁,以降低故障的损坏程度。

1.3同步发电机对励磁的基本要求

首先,对于发电机励磁控制系统,按照我国的标准,有以下几点要求:

1.运行要高度可靠、结构要简单、检修维护要方便。

2.发电机稳态电压精度不低于0.5%~1.0%。

无功调差范围:

汽轮发电机组为±10%,水轮发电机组为±15%。

3.发电机端电压随频率的变化要小,当频率变化为1%时,电压变化小于±O.25%。

4.具有良好的动态品质:

在10%阶跃信号输入时,发电机端电压的超调量不超过50%(快速励磁系统不超过30%):

振荡次数不超过3~5次:

调节时间:

汽轮发电机组不大于10s,水轮发电机组不大于5s。

甩额定负荷时,超调量不大于15%~20%。

5.发电机在各种运行方式下,灭磁开关应能可靠灭磁,并且不产生过高的电压。

其次,对励磁调节器的要求是:

1.具有较小的时间常数,励磁调节器总的等值时间常数不大于O.05s。

2.为保证闭环控制系统的稳定性和良好的动、静性能指标,应采取适当的控制规律和必要的校正措施。

如PID控制、转子电压软负反馈等。

快速励磁系统应配置PSS或多变量控制装置,以利于电力系统稳定性的要求。

实现励磁控制多功能的其它控制规律。

3.采取必要的限制措施以保证整体的可靠性,例如防止转子过电压的励磁过电压限制;防止转子过载的过电流限制:

防止失磁的最低励磁电流限制等。

另外,对励磁电源的要求也有两条:

1.励磁电源要有足够的调节容量,以适应各种运行方式的要求。

2.励磁电源要提供足够的强励倍数和电压上升速度,我国规定强励倍数取2倍,直流励磁机方式可降低为1.8倍;强励允许时间:

空冷方式的机组为50s,水内冷等其它方式只能为10s(水轮机组可为20s);电压上升速度(电压响应比)不小于2倍/s

 

第2章同步发电机励磁系统

2.1同步发电机励磁系统的基本原理

同步发电机励磁系统的基本结构如图2.1所示,同步发电机励磁系统一般由励磁功率单元和励磁调节器两部分组成。

励磁功率单元包括励磁机或励磁变压器、可控硅整流器等,它向同步发电机提供直流电流,即励磁电流;励磁调节器根据输入信号和给定的调节规律控制励磁功率单元的输出。

整个励磁自动控制系统是由励磁调节器、励磁功率单元和发电机构成的一个反馈控制系统。

其中,励磁调节器是控制器,励磁功率单元为执行机构,发电机是控制对象。

励磁系统的结构在技术发展的不同阶段而有所不同,如励磁控制器电气部分就经历了模拟式调节器和微机式调节器,控制策略也经历了比例式调节规律

图2-1励磁系统基本结构框图

、PID控制、LOEC控制、PSS辅助控制等;励磁功率单元结构也多有不同,有直流电机励磁方式、交流电机励磁方式以及静止励磁方式。

同步发电机根据磁极形状可以分为隐极和凸极两种形式。

隐极同步发电机气隙均匀,转子机械强度高,适合于高速旋转,多与汽轮机构成发电机组,是汽轮发电机的基本结构形式。

凸极同步发电机的气隙不均匀,常与水轮机构成发电机组,是水轮发电机的基本结构形式。

在电力系统正常运行或事故运行中,同步发电机励磁控制系统都起着重要的作用。

优良的励磁控制系统不仅可以保证发电机可靠运行,提供合格的电能,而且还可以有效地提高系统的技术指标。

2.2同步发电机励磁系统的任务与类型

根据运行方面的要求,励磁控制系统应执行以下任务:

(1)维持发电机电压在给定水平。

在发电机正常运行条件下,励磁控制系统应维持发电机端(或给定控制点)电压在给定水平。

通常发电机机端电压会随着发电机负荷变化而变化,这时,励磁系统将自动地增加或减少发电机的励磁电压,使机端电压维持在一定的水平上。

(2)调节并列运行发电机间的无功功率分配。

多台发电机在母线上并列运行时,它们输出的有功功率决定于从原动机输入的轴功率,而发电机输出的无功功率则和励磁电流有关,控制并联运行的发电机之间的无功分配是励磁控制系统的一项重要的功能。

(3)提高同步发电机组并列运行的稳定性。

励磁系统可以通过维持机端电压提高发电机静态稳定极限,对暂态稳定的贡献则主要体现在增加人工阻尼消除第二摆或多摆失步方面。

同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。

励磁控制系统的三大基本任务是:

稳定电压,合理分配无功功率和提高电力系统稳定性。

图2-2励磁控制系统示意图

实验用的励磁控制系统示意图如图1所示。

可供选择的励磁方式有两种:

自并励和它励。

当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。

而当交流励磁电源取自380V市电时,构成它励励磁系统。

两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。

微机励磁调节器的控制方式有四种:

恒UF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。

其中,恒α方式是一种开环控制方式,只限于它励方式下使用。

同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。

当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。

2.3同步发电机励磁系统的运行方式

发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。

励磁调节器可以适应发电机或电力系统的不同运行需求而实现多种调节方式,主要包括恒机端电压运行方式、恒励磁电流运行方式、恒无功功率/功率因数运行方式、跟踪母线电压运行方式等。

这些运行方式基本上能够满足发电机或电力系统的各种运行要求,以下分别加以简述。

2.3.1恒机端电压运行方式

该方式为发电机机端电压闭环自动调节方式,是大机组常用的控制方案。

在此运行方式下,数字励磁调节器的任务是维持发电机机端电压恒定,一般采用PID控制律进行调节。

为抑制系统低频振荡,提高电力系统稳定性,可加入电力系统稳定器(PSS)等作为附加控制信号。

图2-3恒机端电压附加PSS控制方式图

设计时先按励磁系统的基本要求确定PID控制参数,在此基础上再进行PSS的设计。

先建立电力系统的非线性方程组,然后选取典型运行点(一般为满载)将其线性化,据此设计出一组能提高暂态稳定性、且有良好适应性的PSS参数。

在PSS设计中,把电压调节通道作为主调节通道,在电压调节通道设计完成的情况下进行,充分考虑了该通道对暂态稳定性的不利影响,既满足了电压调节要求,又保证了暂态稳定性,符合系统实际运行需要;同时在设计中又考虑了运行方式变化可能产生的影响,在选择固定参数时使系统有良好的相频特性,故适应性较好。

2.3.2恒励磁电流运行方式

该方式以励磁电流作为反馈信号,与给定值比较后经调节器输出控制信号给移相触发单元,在机组安装、检修测试时经常采用这种方式。

通过调节励磁电流来调节机端电压或发电机的无功,调节平稳、调节范围宽。

在空载运行时,由于电机的空载电势与励磁电流在不计磁饱和的情况下成线性关系,故调节效果类似于恒机端电压运行方式;并网后调整励磁电流可以直接改变电机输出的无功功率,实现无功调节,而不须叠加调差信号,相当于开环调节无功功率。

而在恒机端电压运行方式下,如需调节无功,则需要通过无功功率测量单元投入调差信号kQ(k为调差系数,Q为无功功率测量或计算值)

图2-4恒励磁电流控制方式图

2.3.3恒无功功率/功率因数运行方式

该方式通过检测或计算得到无功功率或功率因数,之后将其与给定值进行比较,经调节器运算,得出控制信号。

一般是将其叠加在恒机端电压或恒励磁电流调节方式上,调整励磁电流或机端电压的给定值来实现。

本文所设计的系统在并网后即投入功率因数环,将其控制信号叠加在励磁电流给定值上,以调节发电机的功率因数,该控制方法简单易行,适用于小机组。

2.3.4跟踪母线电压运行方式

该方式使发电机空载起励时跟踪母线电压,为机组并网做好准备;当发电机与系统解列后,跟踪母线电压,为再次并网创造条件。

同步发电机励磁控制技术包括励磁技术、计算机技术以及控制策略三个方面。

随着数字控制技术、计算机技术及现代控制理论的发展和日益成熟,以微处理器为主要特征的数字电子技术正在应用到现代励磁控制系统之中,取代原有晶体管或集成电路构成的传统模拟式励磁调节器。

近年,微机励磁调节器己经逐步取代模拟式励磁调节器成为同步发电机励磁调节器的主流。

以全控型器件组成的自并励励磁方式被广泛应用。

第3章同步发电机励磁系统的实验研究

3.1WDT-ⅢC型电力系统综合自动化试验台介绍

WDT-ⅢC型电力系统综合自动化试验台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。

此系统除用于试验教学以外,另可用于本、专科生的课程设计试验,也可作为研究生、科研人员的产品开发试验,还可作为电力系统技术人员的培训基地。

综合自动化实验教学系统由发电机组、试验操作台、无穷大系统等三大部分组成(如图3-1所示)。

 

图3-1WDT-ⅢC型电力系统综合自动化试验装置

3.1.1发电机组

它是由同在一个轴上的三相同步发电机(SN=2.5kVA,VN=400V,nN=1500r.p.m),模拟原动机用的直流电动机(PN=2.2kW,VN=220V)以及测速装置和功率角指示器组成。

直流电动机、同步发电机经弹性联轴器对轴联结后组装在一个活动底盘上构成可移动式机组。

具有结构紧凑、占地少、移动轻便等优点,机组的活动底盘有四个螺旋式支脚和三个橡皮轮,将支脚旋下即可固定安放。

3.1.2试验操作台

试验操作台是由输电线路单元、YHB-A型微机线路保护单元、负荷调节和同期单元、仪表测量和短路故障模拟单元等组成。

其中负荷调节和同期单元是由“TGS-03B型微机调速装置”、“WL-04B微机磁励调节器”、“HGWT-03B微机准同期控制器”等微机型的自动装置和其相对应的手动装置组成。

(1)输电线路采用双回路远距离输电线路模型,每回线路分成两段,并设置中间开关站,使发电机与系统之间可构成四种不同联络阻抗,便于实验分析比较。

(2)“YHB-A微机保护装置”是专为实验教学设计,具有过流选相跳闸、自动重合闸功能,备有事故记录功能,有利于实验分析。

在实验中可以观测到线路重合闸对系统暂态稳定性影响以及非全相运行状况。

(3)“TGS-03B型微机调速装置”是针对大、中专院校教学和科研而设计的,能做到最大限度地满足教学科研灵活多变的需要。

具有测量发电机转速、测量电网频率、测量系统功角、手动模拟调节、手动数字调节、微机自动调速以及过速保护等功能。

(4)“WL-04B微机励磁调节器”其励磁方式可选择:

它励、自并励两种;控制方式可选择恒UF、恒IL、恒、恒Q等四种;设有定子过电压保护和励磁电流反时限延时过励限制、最大励磁电流瞬时限制、欠励限制、伏赫限制等励磁限制功能;设有按有功功率反馈的电力系统稳定器(PSS);励磁调节器控制参数可在线修改、在线固化,灵活方便,并具有实验录波功能,可以记录UF、IL、UL、P、Q、等信号的时间响应曲线,供实验分析用。

(5)HGWT-03B微机准同期控制器,它按恒定越前时间原理工作,主要特点如下:

①可选择全自动准同期合闸;②可选择半自动准同期合闸;③可测定断路器的开关时间;④可测定合闸误差角;⑤可改变频差允许值,电压差允许值,观察不同整定值时的合闸效果;⑥按定频调宽原理实现均频均压控制,自由整定均频均压脉冲宽度系数,自由整定均频均压脉冲周期;观察不同整定值时的均频均压效果;⑦可观察合闸脉冲相对于三角波的位置,测定越前时间和越前角度;⑧可自由整定越前(开关)时间;⑨输出合闸出口电平信号,供实验录波之用。

(6)仪表测量和短路故障模拟单元由各种测量表计及其切换开关、各种带灯操作按钮和各种类型的短路故障操作等部分组成。

试验操作台的“操作面板”上有模拟接线图,操作按钮与模拟接线图中被操作的对象结合起来,并用灯光颜色表示其工作状态,具有直观的效果。

试验数据可以通过测量仪表和LED数码显示得出,还可显示出同步发电机功率角、可控硅角等量。

同时可以通过数字存贮示波器,观测到发电机电压、系统电压、励磁电压以及准同期时的脉动电压等电压波形,甚至可以观测各可控硅上的电压波形以及各种控制的脉冲波形,还可以同时观测到同步发电机短路时的电流、电压波形等。

3.1.3无穷大系统

无穷大电源是由15kVA的自耦调压器组成。

通过调整自耦调压器的电压可以改变无穷大母线的电压。

试验操作台的“操作面板”上有模拟接线图、操作按钮和切换开关以及指示灯和测量仪表等。

操作按钮与模拟接线图中被操作的对象结合在一起,并用灯光颜色表示其工作状态,具有直观的效果。

红色灯亮表示开关在合闸位置,绿色灯亮表示开关在分闸位置,试验操作台“台体的平面布置示意图”见附录二。

在试验操作台的“操作面板”左下方有一个“电源开关”(开关对应的图中符号为“QA”),此开关向整个台体提供操作电源和动力电源,以及四台微机装置的工作电源,并给信号灯用直流24V稳压电源供电。

因此,在下面叙述的各部分操作之前,都必须先投入“电源开关”(向上扳至ON),此时反映各开关位置的绿色指示灯亮,同时四台微机装置上电、数码管均能正确显示;在结束试验时,其它操作都正确完成之后,同样必须断开操作电源开关(向下扳至OFF)。

综合自动化试验教学平台的研制,更新与加强了专业实验内容,改进了实验方法与手段,创建了一套能进行专业课程和综合研究实验的实验装置,建立一个开放式、研究性、综合型的专业实验现代教学体系,提高专业实验的教学质量和水平,更有利于培养学生综合分析问题和解决问题的能力。

此外,本装置在设计中充分发挥各设备的作用,考虑到模型操作的灵活性和方便性以及接口的通用性,在制造上符合电力系统规范,在设计中增加一些与外部联接的功能,以便对外来设备进行性能考核实验,例如:

对线路保护、励磁或同期等自动装置进行考核实验,这在一定程度上扩大其使用范围。

3.2同步发电机励磁系统试验装置

本套试验装置的同步发电机有三种励磁方式可供选择(如图3-2所示):

一、手动励磁方式,它是市电交流220V通过变压器降压后,经自耦调压器调至需要电压,再通过三相整流桥整成直流向同步发电机励磁绕组供电,励磁调节由试验人员手动操作自耦调压器来实现;

二、微机它励方式,它是市电交流380V通过变压器降压后,经可控硅整流向发电机励磁绕组供电,由微机励磁调节器将计算结果转换成触发,可控硅的触发角度,形成六路双窄脉冲,经功率放大和脉冲变压器隔离后去触发可控硅,从而使可控硅整流桥输出可调的直流电流;

三、微机自并励方式,它是发电机机端电压通过变压器降压后,经可控硅整流向发电机励磁绕组供电由微机励磁调节器将计算结果转换成触发,可控硅的触发角度,形成六路双窄脉冲,经功率放大和脉冲变压器隔离后去触发可控硅,从而使可控硅整流桥输出可调的直流电流。

 

图3-2励磁系统一次接线图

在微机它励方式或微机自并励方式下,自动励磁调节任务由WL-04B型微机励磁调节器来承担。

3.2.1WL-04B微机励磁调节器

WL-04B微机励磁调节器是为大专院校开设《电力系统自动装置原理》、《电力系统分析》、《电力工程》等课程的教学实验而特殊设计的微机型励磁调节器。

其励磁方式可选择:

它励、自并励两种。

微机励磁调节器的控制方式可选择恒UF、恒IL、恒α、恒Q等四种。

设有定子过电压保护和励磁电流反时限延时过励限制、最大励磁电流瞬时限制、欠励限制、伏赫限制等励磁限制功能。

设有按有功功率反馈的电力系统稳定器(PSS)。

励磁调节器控制参数可在线修改,在线固化,灵活方便,能做到最大限度地满足教学科研灵活多变的需要。

具有实验录波功能,可以记录UF、IL、UL、P、Q、等信号的时间响应曲线,供实验分析用。

微机励磁调节器面板包括:

8位LED数码显示器,若干指示灯和按钮,强、弱电测试孔(其面板图如图3-3所示),具体用途及其操作方法如下。

武汉华大电力自动技术有限责任公司

 

图3-3WL-04B微机励

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1