机器人研发PID控制技术应用研究分析报告论文.docx

上传人:b****5 文档编号:11889278 上传时间:2023-04-08 格式:DOCX 页数:8 大小:123.69KB
下载 相关 举报
机器人研发PID控制技术应用研究分析报告论文.docx_第1页
第1页 / 共8页
机器人研发PID控制技术应用研究分析报告论文.docx_第2页
第2页 / 共8页
机器人研发PID控制技术应用研究分析报告论文.docx_第3页
第3页 / 共8页
机器人研发PID控制技术应用研究分析报告论文.docx_第4页
第4页 / 共8页
机器人研发PID控制技术应用研究分析报告论文.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

机器人研发PID控制技术应用研究分析报告论文.docx

《机器人研发PID控制技术应用研究分析报告论文.docx》由会员分享,可在线阅读,更多相关《机器人研发PID控制技术应用研究分析报告论文.docx(8页珍藏版)》请在冰豆网上搜索。

机器人研发PID控制技术应用研究分析报告论文.docx

机器人研发PID控制技术应用研究分析报告论文

 

机器人研发PID控制技术应用

研究分析报告论文

 

摘要

为使研发机器人完成各种任务和动作所执行的各种控制手段。

作为计算机系统中的关键技术,计算机控制技术包括范围十分广泛,从研发机器人智能、任务描述到运动控制和伺服控制等技术。

既包括实现控制所需的各种硬件系统,又包括各种软件系统。

最早的研发机器人采用顺序控制方式,随着计算机的发展,研发机器人采用计算机系统来综合实现机电装置的功能,并采用示教再现的控制方式。

随着信息技术和控制技术的发展,以及研发机器人应用范围的扩大,研发机器人控制技术正朝着智能化的方向发展,出现了离线编程、任务级语言、多传感器信息融合、智能行为控制等新技术。

多种技术的发展将促进智能研发机器人的实现。

当今的自动控制技术都是基于反馈的概念。

反馈理论的要素包括三个部分:

测量、比较和执行。

测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。

这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。

PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。

PID调节简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。

它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti和Td)即可。

在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

关键词:

研发机器人,研发机器人控制,PID,自动控制

第1章引言

研发机器人控制的关键技术

关键技术包括:

(1)开放性模块化的控制系统体系结构:

采用分布式CPU计算机结构,分为研发机器人控制器(RC),运动控制器(MC),光电隔离I/O控制板、传感器处理板和编程示教盒等。

研发机器人控制器(RC)和编程示教盒通过串口/CAN总线进行通讯。

研发机器人控制器(RC)的主计算机完成研发机器人的运动规划、插补和位置伺服以及主控逻辑、数字I/O、传感器处理等功能,而编程示教盒完成信息的显示和按键的输入。

(2)模块化层次化的控制器软件系统:

软件系统建立在基于开源的实时多任务操作系统Linux上,采用分层和模块化结构设计,以实现软件系统的开放性。

整个控制器软件系统分为三个层次:

硬件驱动层、核心层和应用层。

三个层次分别面对不同的功能需求,对应不同层次的开发,系统中各个层次内部由若干个功能相对对立的模块组成,这些功能模块相互协作共同实现该层次所提供的功能。

(3)研发机器人的故障诊断与安全维护技术:

通过各种信息,对研发机器人故障进行诊断,并进行相应维护,是保证研发机器人安全性的关键技术。

第2章研发机器人PID控制

2.1PID调节的组成

PID调节由比例单元(P)、积分单元(I)和微分单元(D)组成。

其输入e(t)与输出u(t)的关系为u(t)=Kp(e((t)+1/TI∫e(t)dt+TD*de(t)/dt)

式中积分的上下限分别是0和t,

因此它的传递函数为:

G(s)=U(s)/E(s)=kp(1+1/(TI*s)+TD*s);

其中Kp为比例系数;TI为积分时间常数;TD为微分时间常数。

它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti和Td)即可。

在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

首先,PID应用范围广。

虽然很多工业过程是非线性或时变的,但通过对其简化可以变成基本线性和动态特性不随时间变化的系统,这样PID就可控制了。

其次,PID参数较易整定。

也就是,PID参数Kp,Ti和Td可以根据过程的动态特性及时整定。

如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。

2.2PID调节的研究现状

虽然有这些缺点,PID调节是最简单的有时却是最好的控制器。

目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。

控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。

不同的控制系统,其传感器、变送器、执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID调节(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID调节产品,各大公司均开发了具有PID参数自整定功能的智能调节器,其中PID调节参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

 

2.3PID调节的不足

在一些情况下针对特定的系统设计的PID调节控制得很好,但它们仍存在一些问题需要解决:

如果自整定要以模型为基础,为了PID参数的重新整定在线寻找和保持好过程模型是较难的。

闭环工作时,要求在过程中插入一个测试信号。

这个方法会引起扰动,所以基于模型的PID参数自整定在工业应用不是太好。

如果自整定是基于控制律的,经常难以把由负载干扰引起的影响和过程动态特性变化引起的影响区分开来,因此受到干扰的影响控制器会产生超调,产生一个不必要的自适应转换。

另外,由于基于控制律的系统没有成熟的稳定性分析方法,参数整定可靠与否存在很多问题。

因此,许多自身整定参数的PID调节经常工作在自动整定模式而不是连续的自身整定模式。

自动整定通常是指根据开环状态确定的简单过程模型自动计算PID参数。

PID在控制非线性、时变、耦合及参数和结构不确定的复杂过程时,工作地不是太好。

最重要的是,如果PID调节不能控制复杂过程,无论怎么调参数都没用。

第3章PID控制的原理和特点

3.1PID控制的原理

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID调节问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID调节就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制

比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。

为了消除稳态误差,在控制器中必须引入积分项。

积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。

这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。

因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。

自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。

其原因是由于存在有较大惯性环节或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。

解决的办法是使抑制误差的作用的变化超前,即在误差接近零时,抑制误差的作用就应该是零。

这就是说,在控制器中仅引入比例项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是微分项,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

3.2PID控制的特点

在PID控制中,积分控制的特点是:

只要还有余差(即残余的控制偏差)存在,积分控制就按部就班地逐渐增加控制作用,直到余差消失。

所以积分的效果比较缓慢,除特殊情况外,作为基本控制作用,缓不救急。

微分控制的特点是:

尽管实际测量值还比设定值低,但其快速上扬的冲势需要及早加以抑制,否则,等到实际值超过设定值再作反应就晚了,这就是微分控制施展身手的地方了。

作为基本控制使用,微分控制只看趋势,不看具体数值所在,所以最理想的情况也就是把实际值稳定下来,但稳定在什么地方就要看你的运气了,所以微分控制也不能作为基本控制作用。

比例控制没有这些问题,比例控制的反应快,稳定性好,是最基本的控制作用,是“皮”,积分、微分控制是对比例控制起增强作用的,极少单独使用,所以是”毛”。

在实际使用中比例和积分一般一起使用,比例承担主要的控制作用,积分帮助消除余差。

微分只有在被控对象反应迟缓,需要在开始有所反应时,及早补偿,才予以采用。

只用比例和微分的情况很少见。

第4章PID调节的参数整定

PID调节的参数整定是控制系统设计的核心内容。

它是根据被控过程的特性确定PID调节的比例系数、积分时间和微分时间的大小。

PID调节参数整定的方法很多,概括起来有两大类:

一是理论计算整定法。

它主要是依据系统的数学模型,经过理论计算确定控制器参数。

这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。

PID调节参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。

三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。

但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

现在一般采用的是临界比例法。

利用该方法进行PID调节参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作;

(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID调节的参数。

总结

研发机器人控制系统是研发机器人的大脑,是决定研发机器人功能和性能的主要因素。

研发机器人控制器是根据指令以及传感信息控制研发机器人完成一定的动作或作业任务的装置,它是研发机器人的心脏,决定了研发机器人性能的优劣。

研发机器人技术涉及计算机、电子、控制等多学科专业,是近年来高新技术发展的一个重要领域和研究热点。

随着研发机器人技术的发展,研发机器人应用领域的不断扩大,对研发机器人的性能提出了更高的要求,因此,如何有效地将其他领域(如图像处理、声音识别、最优控制、人工智能等)的研究成果应用到研发机器人控制系统的实时操作中,是一项富有挑战性的研究工作.而具有开放式结构的模块化、标准化研发机器人控制器的研究无疑对提高研发机器人性能和自主能力、推动研发机器人技术的发展具有重大意义。

参考文献

[1]JohnJ.Craig.研发机器人学导论,第三版,2006,6

[2]孟宪员源,姜琪主编.机构构型与应用,第一版,机械工业出版社,2004,43、145-146、274、151-152、607-609

[3]谈欣柏主编.大学物理,第一版,天津大学出版社,2000,2-22

[4]成大先主编.机械设计手册,第一版,化学工业出版社,2005,76-84、99-141,157-160

[5]加腾一郎主编.机械手图册,第一版,上海科学技术出版社,1979,50、59、78-79、97、160-176

[6]宗光华等编著.研发机器人的创意设计与实践,第一版,北京航空航天大学出版社,2004,25-35、138-150

[7]卜炎主编.中国机械设计大典—机械零部件设计,第一版,江西科技出版社,2002

[8]费仁元,张慧慧主编.研发机器人机械设计和分析,第一版,北京工业大学出版社,1998

[9]宗光华主编.研发机器人的创意设计与实践,第一版,北京航空航天大学出版社,2004

[10]蔡自兴主编.研发机器人学,清华大学出版社,2000

【本文具有使用参考价值,下载后可以编辑修改,只限XX文库原作者分享,下载后请不要重复上传在XX文库或者其他文档分享网站里。

谢谢配合。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 文学研究

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1