相交线与平行线导学案及单元测试题.docx
《相交线与平行线导学案及单元测试题.docx》由会员分享,可在线阅读,更多相关《相交线与平行线导学案及单元测试题.docx(47页珍藏版)》请在冰豆网上搜索。
相交线与平行线导学案及单元测试题
讲义②第五章相交线与平行线
测试1相交线
学习要求
1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.
2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.
课堂学习检测
一、填空题
1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.
2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________
________,那么具有这种位置关系的两个角叫做对顶角.
3.对顶角的重要性质是_________________.
4.如图,直线AB、CD相交于O点,∠AOE=90°.
(1)∠1和∠2叫做______角;∠1和∠4互为______角;
∠2和∠3互为_______角;∠1和∠3互为______角;
∠2和∠4互为______角.
(2)若∠1=20°,那么∠2=______;
∠3=∠BOE-∠______=______°-______°=______°;
∠4=∠______-∠1=______°-______°=______°.
5.如图,直线AB与CD相交于O点,且∠COE=90°,则
(1)与∠BOD互补的角有________________________;
(2)与∠BOD互余的角有________________________;
(3)与∠EOA互余的角有________________________;
(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.
二、选择题
6.图中是对顶角的是().
7.如图,∠1的邻补角是().
(A)∠BOC(B)∠BOC和∠AOF
(C)∠AOF(D)∠BOE和∠AOF
8.如图,直线AB与CD相交于点O,若
,则∠BOD的度数为().
(A)30°(B)45°
(C)60°(D)135°
9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是().
(A)∠1=90°,∠2=30°,∠3=∠4=60°
(B)∠1=∠3=90°,∠2=∠4=30°
(C)∠1=∠3=90°,∠2=∠4=60°
(D)∠1=∠3=90°,∠2=60°,∠4=30°
三、判断正误
10.如果两个角相等,那么这两个角是对顶角.()
11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.()
12.有一条公共边的两个角是邻补角.()
13.如果两个角是邻补角,那么它们一定互为补角.()
14.对顶角的角平分线在同一直线上.()
15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.()
综合、运用、诊断
一、解答题
16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.
17.已知:
如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.
18.已知:
如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.
19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?
拓展、探究、思考
20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.
21.回答下列问题:
(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?
几对邻补角?
(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?
几对邻补角?
(3)m条直线a1,a2,a3,…,am-1,am相交于点O,则图中一共有几对对顶角(平角除外)?
几对邻补角?
测试2垂线
学习要求
1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.
2.理解点到直线的距离的概念,并会度量点到直线的距离.
课堂学习检测
一、填空题
1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.
2.垂线的性质
性质1:
平面内,过一点____________与已知直线垂直.
性质2:
连接直线外一点与直线上各点的_________中,_________最短.
3.直线外一点到这条直线的__________________叫做点到直线的距离.
4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.
二、按要求画图
5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.
图a图b图c
6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.
图a图b图c
7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.
图a图b图c
8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.
综合、运用、诊断
一、判断下列语句是否正确(正确的画“√”,错误的画“×”)
9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.()
10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.()
11.一条直线的垂线只能画一条.()
12.平面内,过线段AB外一点有且只有一条直线与AB垂直.()
13.连接直线l外一点到直线l上各点的6个有线段中,垂线段最短.()
14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.()
15.直线外一点到这条直线的垂线段,叫做点到直线的距离.()
16.在三角形ABC中,若∠B=90°,则AC>AB.()
二、选择题
17.如图,若AO⊥CO,BO⊥DO,且∠BOC=α,则∠AOD等于().
(A)180°-2α(B)180°-α
(C)
(D)2α-90°
18.如图,点P为直线m外一点,点P到直线m上的三点A、B、C的距离分别为PA=4cm,PB=6cm,PC=3cm,则点P到直线m的距离为().
(A)3cm(B)小于3cm
(C)不大于3cm(D)以上结论都不对
19.如图,BC⊥AC,CD⊥AB,AB=m,CD=n,则AC的长的取值范围是().
(A)AC<m(B)AC>n
(C)n≤AC≤m(D)n<AC<m
20.若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().
(A)0(B)1(C)2(D)3
21.如图,AC⊥BC于点C,CD⊥AB于点D,DE⊥BC于点E,能表示点到直线(或线段)的距离的线段有().
(A)3条(B)4条
(C)7条(D)8条
三、解答题
22.已知:
OA⊥OC,∠AOB∶∠AOC=2∶3.求∠BOC的度数.
23.已知:
如图,三条直线AB,CD,EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF.求∠DOG.
拓展、探究、思考
24.已知平面内有一条直线m及直线外三点A,B,C,分别过这三个点作直线m的垂线,想一想有几个不同的垂足?
画图说明.
25.已知点M,试在平面内作出四条直线l1,l2,l3,l4,使它们分别到点M的距离是1.5cm.
·M
26.从点O引出四条射线OA,OB,OC,OD,且AO⊥BO,CO⊥DO,试探索∠AOC与∠BOD的数量关系.
27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成
直角,与钝角的另一边构成直
角,则此锐角与钝角的和等于直角的多少倍?
测试3同位角、内错角、同旁内角
学习要求
当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.
课堂学习检测
一、填空题
1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?
(1)∠1与∠2是_______;
(2)∠5与∠7是______;
(3)∠1与∠5是_______;(4)∠5与∠3是______;
(5)∠5与∠4是_______;(6)∠8与∠4是______;
(7)∠4与∠6是_______;(8)∠6与∠3是______;
(9)∠3与∠7是______;(10)∠6与∠2是______.
2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.
3.如图所示,
(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;
(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.
4.如图所示,
(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;
(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;
(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.
综合、运用、诊断
一、选择题
5.已知图①~④,
图①图②图③图④
在上述四个图中,∠1与∠2是同位角的有().
(A)①②③④(B)①②③
(C)①③(D)①
6.如图,下列结论正确的是().
(A)∠5与∠2是对顶角(B)∠1与∠3是同位角
(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角
7.如图,∠1和∠2是内错角,可看成是由直线().
(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成
(C)AB,CD被AD所截构成
(D)AB,CD被BC所截构成
8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有().
(A)4对(B)8对
(C)12对(D)16对
拓展、探究、思考
一、解答题
9.如图,三条直线两两相交,共有几对对顶角?
几对邻补角?
几对同位角?
几对内错角?
几对同旁内角?
测试4平行线及平行线的判定
学习要求
1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.
2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.
课堂学习检测
一、填空题
1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.
2.在同一平面内,两条直线的位置关系只有______、______.
3.平行公理是:
_______________________________________________________________.
4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.
5.两条直线平行的条件(除平行线定义和平行公理推论外):
(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:
____________,两直线平行.
(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:
____________,____________.
(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:
____________,____________.
二、根据已知条件推理
6.已知:
如图,请分别依据所给出的条件,判定相应的哪两条直线平行?
并写出推理的根据.
(1)如果∠2=∠3,那么____________.(____________,____________)
(2)如果∠2=∠5,那么____________.(____________,____________)
(3)如果∠2+∠1=180°,那么____________.(____________,____________)
(4)如果∠5=∠3,那么____________.(____________,____________)
(5)如果∠4+∠6=180°,那么____________.(____________,____________)
(6)如果∠6=∠3,那么____________.(____________,____________)
7.已知:
如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.
(1)∵∠B=∠3(已知),
∴______∥______.(____________,____________)
(2)∵∠1=∠D(已知),
∴______∥______.(____________,____________)
(3)∵∠2=∠A(已知),
∴______∥______.(____________,____________)
(4)∵∠B+∠BCE=180°(已知),
∴______∥______.(____________,____________)
综合、运用、诊断
一、依据下列语句画出图形
8.已知:
点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.
9.已知:
三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.
二、解答题
10.已知:
如图,∠1=∠2.求证:
AB∥CD.
(1)分析:
如图,欲证AB∥CD,只要证∠1=______.
证法1:
∵∠1=∠2,(已知)
又∠3=∠2,()
∴∠1=_______.()
∴AB∥CD.(___________,___________)
(2)分析:
如图,欲证AB∥CD,只要证∠3=∠4.
证法2:
∵∠4=∠1,∠3=∠2,()
又∠1=∠2,(已知)
从而∠3=_______.()
∴AB∥CD.(___________,___________)
11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:
利用丁字尺画平行线的理论依据是什么?
拓展、探究、思考
12.已知:
如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.
(1)问题的结论:
DF______AE.
(2)证明思路分析:
欲证DF______AE,只要证∠3=______.
(3)证明过程:
证明:
∵CD⊥DA,DA⊥AB,()
∴∠CDA=∠DAB=______°.(垂直定义)
又∠1=∠2,()
从而∠CDA-∠1=______-______,(等式的性质)
即∠3=___.
∴DF___AE.(____,____)
13.已知:
如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC.且∠1=∠3.
求证:
AB∥DC.
证明:
∵∠ABC=∠ADC,
()
又∵BF、DE分别平分∠ABC与∠ADC,
()
∴∠______=∠______.()
∵∠1=∠3,()
∴∠2=∠______.(等量代换)
∴______∥______.()
14.已知:
如图,∠1=∠2,∠3+∠4=180°.试确定直线a与直线c的位置关系,并说明你的理由.
(1)问题的结论:
a______c.
(2)证明思路分析:
欲证a______c,只要证______∥______且______∥______.
(3)证明过程:
证明:
∵∠1=∠2,()
∴a∥______.(________,________)①
∵∠3+∠4=180°,()
∴c∥______.(________,________)②
由①、②,因为a∥______,c∥______,
∴a______c.(________,________)
测试5平行线的性质
学习要求
1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.
2.了解平行线的判定与平行线的性质的区别.
3.理解两条平行线的距离的概念.
课堂学习检测
一、填空题
1.平行线具有如下性质:
(1)性质1:
______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.
(2)性质2:
两条平行线__________________,_______相等.这个性质可简述为______
_______,_____________.
(3)性质3:
__________________,同旁内角______.这个性质可简述为_____________,
__________________.
2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.
二、根据已知条件推理
3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.
(1)如果AB∥EF,那么∠2=______.理由是____________________.
(2)如果AB∥DC,那么∠3=______.理由是___________________.
(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.
(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.
4.已知:
如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.
(1)∵DE∥AB,()
∴∠2=______.(__________,__________)
(2)∵DE∥AB,()
∴∠3=______.(__________,__________)
(3)∵DE∥AB(),
∴∠1+______=180°.(______,______)
综合、运用、诊断
一、解答题
5.如图,∠1=∠2,∠3=110°,求∠4.
解题思路分析:
欲求∠4,需先证明______∥______.
解:
∵∠1=∠2,()
∴______∥______.(__________,__________)
∴∠4=______=______°.(__________,__________)
6.已知:
如图,∠1+∠2=180°.求证:
∠3=∠4.
证明思路分析:
欲证∠3=∠4,只要证______∥______.
证明:
∵∠1+∠2=180°,()
∴______∥______.(__________,__________)
∴∠3=∠4.(______,______)
7.已知:
如图,AB∥CD,∠1=∠B.
求证:
CD是∠BCE的平分线.
证明思路分析:
欲证CD是∠BCE的平分线,
只要证______=______.
证明:
∵AB∥CD,()
∴∠2=______.(____________,____________)
但∠1=∠B,()
∴______=______.(等量代换)
即CD是________________________.
8.已知:
如图,AB∥CD,∠1=∠2.求证:
BE∥CF.
证明思路分析:
欲证BE∥CF,只要证______=______.
证明:
∵AB∥CD,()
∴∠ABC=______.(____________,____________)
∵∠1=∠2,()
∴∠ABC-∠1=______-______,()
即______=______.
∴BE∥CF.(__________,__________)
9.已知:
如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.
解题思路分析:
欲求∠A,只要求∠ACD的大小.
解:
∵CD∥AB,∠B=35°,()
∴∠2=∠______=_______°.(____________,____________)
而∠1=75°,
∴∠ACD=∠1+∠2=______°.
∵CD∥AB,()
∴∠A+______=180°.(____________,____________)
∴∠A=_______=______.
10.已知:
如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.
分析:
可利用∠DCE作为中间量过渡.
解法1:
∵AB∥CD,∠B=50°,()
∴∠DCE=∠_______=_______°.(____________,______)
又∵AD∥BC,()
∴∠D=∠______=_______°.(____________,____________)
想一想:
如果以∠A作为中间量,如何求解?
解法2:
∵AD∥BC,∠B=50°,()
∴∠A+∠B=______.(____________,____________)
即∠A=______-______=______°-______°=______°.
∵DC∥AB,()
∴∠D+∠A=______.(_____________,_____________)
即∠D=______-______=______°-______°=______°.
11.已知:
如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.
解:
过P点作PM∥AB交AC于点M.
∵AB∥CD,()
∴∠BAC+∠______=180°.()
∵PM∥AB,
∴∠1=∠_______,()
且PM∥_______.(平行于同一直线的两直线也互相平行)
∴∠3=∠______.(两直线平行,内错角相等)
∵AP平分∠BAC,CP平分∠ACD,()
______,
______.()
.()
∴∠APC=∠2+∠3=∠1+∠4=90°.()
总结:
两直线平行时,同旁内角的角平分线______.
拓展、探究、思考
12.已知:
如图,AB∥CD,EF⊥AB于M点且EF交CD于N点.求证:
EF⊥CD.
13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠