机电传动控制习题答案.docx
《机电传动控制习题答案.docx》由会员分享,可在线阅读,更多相关《机电传动控制习题答案.docx(14页珍藏版)》请在冰豆网上搜索。
机电传动控制习题答案
习题与思考题
第二章机电传动系统的动力学基础
2.1说明机电传动系统运动方程中的拖动转矩,静态转矩和动态转矩。
答:
拖动转矩是有电动机产生用来克服负载转矩,以带动生产机械运动的。
静态转矩就是由生产机械产生的负载转矩。
动态转矩是拖动转矩减去静态转矩。
2.2从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。
TM-TL>0说明系统处于加速,TM-TL<0说明系统处于减速,TM-TL=0说明系统处于稳态(即静态)的工作状态。
2.4多轴拖动系统为什么要折算成单轴拖动系统?
转矩折算为什么依据折算前后功率不变的原则?
转动惯量折算为什么依据折算前后动能不变的原则?
答:
因为许多生产机械要求低转速运行,而电动机一般具有较高的额定转速。
这样,电动机与生产机械之间就得装设减速机构,如减速齿轮箱或蜗轮蜗杆,皮带等减速装置。
所以为了列出系统运动方程,必须先将各转动部分的转矩和转动惯量或直线运动部分的质量这算到一根轴上。
转矩折算前后功率不变的原则是P=Tω,p不变。
转动惯量折算前后动能不变原则是能量守恒MV=0.5Jω2
2.9一般生产机械按其运动受阻力的性质来分可有哪几种类型的负载?
答:
可分为1恒转矩型机械特性2离心式通风机型机械特性3直线型机械特性4恒功率型机械特性,4种类型的负载.
2.10反抗静态转矩与位能静态转矩有何区别,各有什么特点?
答:
反抗转矩的方向与运动方向相反,,方向发生改变时,负载转矩的方向也会随着改变,因而他总是阻碍运动的.位能转矩的作用方向恒定,与运动方向无关,它在某方向阻碍运动,而在相反方向便促使运动。
第三章
3.3一台他励直流电动机所拖动的负载转矩TL=常数,当电枢电压附加电阻改变时,能否改变其运行其运行状态下电枢电流的大小?
为什么?
这是拖动系统中那些要发生变化?
T=KtφIau=E+IaRa
当电枢电压或电枢附加电阻改变时,电枢电流大小不变.转速n与电动机的电动势都发生改变.
3.4一台他励直流电动机在稳态下运行时,电枢反电势E=E1,如负载转矩TL=常数,外加电压和电枢电路中的电阻均不变,问减弱励磁使转速上升到新的稳态值后,电枢反电势将如何变化?
是大于,小于还是等于E1?
T=IaKtφ,φ减弱,T是常数,Ia增大.根据EN=UN-IaRa,所以EN减小.,小于E1.
3.11为什么直流电动机直接启动时启动电流很大?
答:
电动机在未启动前n=0,E=0,而Ra很小,所以将电动机直接接入电网并施加额定电压时,启动电流将很大.Ist=UN/Ra
3.12他励直流电动机直接启动过程中有哪些要求?
如何实现?
答:
他励直流电动机直接启动过程中的要求是1启动电流不要过大,2不要有过大的转矩.可以通过两种方法来实现电动机的启动一是降压启动.二是在电枢回路内串接外加电阻启动.
3.13直流他励电动机启动时,为什么一定要先把励磁电流加上?
若忘了先合励磁绕阻的电源开关就把电枢电源接通,这是会产生什么现象(试从TL=0和TL=TN两种情况加以分析)?
当电动机运行在额定转速下,若突然将励磁绕阻断开,此时又将出现什么情况?
答:
直流他励电动机启动时,一定要先把励磁电流加上使因为主磁极靠外电源产生磁场.如果忘了先合励磁绕阻的电源开关就把电枢电源接通,TL=0时理论上电动机转速将趋近于无限大,引起飞车,TL=TN时将使电动机电流大大增加而严重过载.
3.16直流电动机用电枢电路串电阻的办法启动时,为什么要逐渐切除启动电阻?
如切出太快,会带来什么后果?
答:
如果启动电阻一下全部切除,,在切除瞬间,由于机械惯性的作用使电动机的转速不能突变,在此瞬间转速维持不变,机械特性会转到其他特性曲线上,此时冲击电流会很大,所以采用逐渐切除启动电阻的方法.如切除太快,会有可能烧毁电机.
3.17转速调节(调速)与固有的速度变化在概念上有什么区别?
答:
速度变化是在某机械特性下,由于负载改变而引起的,二速度调节则是某一特定的负载下,靠人为改变机械特性而得到的.
3.18他励直流电动机有哪些方法进行调速?
它们的特点是什么?
答:
他励电动机的调速方法:
第一改变电枢电路外串接电阻Rad
特点:
在一定负载转矩下,串接不同的电阻可以得到不同的转速,机械特性较软,电阻越大则特性与如软,稳定型越低,载空或轻载时,调速范围不大,实现无级调速困难,在调速电阻上消耗大量电量。
第二改变电动机电枢供电电压
特点:
当电压连续变化时转速可以平滑无级调速,一般只能自在额定转速以下调节,调速特性与固有特性相互平行,机械特性硬度不变,调速的稳定度较高,调速范围较大,调速时因电枢电流与电压无关,属于恒转矩调速,适应于对恒转矩型负载。
可以靠调节电枢电压来启动电机,不用其它启动设备,
第三改变电动机主磁通
特点可以平滑无级调速,但只能弱词调速,即在额定转速以上调节,调速特性较软,且受电动机换向条件等的限制,调速范围不大,调速时维持电枢电压和电流步变,属恒功率调速。
3.19直流电动机的电动与制动两种运转状态的根本区别何在?
答:
电动机的电动状态特点是电动机所发出的转矩T的方向与转速n的方向相同.制动状态特点使电动机所发的转矩T的方向与转速n的方向相反
3.20他励直流电动机有哪几种制动方法?
它们的机械特性如何?
试比较各种制动方法的优缺点。
1反馈制动
机械特性表达式:
n=U/Keφ-(Ra+Rad)T/keKtφ2
T为负值,电动机正转时,反馈制动状态下的机械特性是第一象限电动状态下的机械特性第二象限内的延伸.
反馈制动状态下附加电阻越大电动机转速越高.为使重物降速度不至于过高,串接的附加电阻不宜过大.但即使不串任何电阻,重物下放过程中电机的转速仍过高.如果放下的工件较重.则采用这种制动方式运行不太安全.
2反接制动
电源反接制动
电源反接制动一般应用在生产机械要求迅速减速停车和反向的场合以及要求经常正反转的机械上.
倒拉反接制动
倒拉反接制动状态下的机械特性曲线实际上是第一象限电动状态下的机械特性区现在第四象限中的延伸,若电动反向转在电动状态,则倒拉反接制动状态下的机械特性曲线,就是第三象限中电动状态下的机械特性曲线在第二象限延伸..它可以极低的下降速度,保证生产的安全,缺点是若转矩大小估计不准,则本应下降的重物可能向上升,机械特性硬度小,速度稳定性差.
3能耗制动
机械特性曲线是通过原点,且位于第二象限和第四象限的一条直线,优点是不会出现像倒拉制动那样因为对TL的大小估计错误而引起重物上升的事故.运动速度也较反接制动时稳定.
第四章
4.4机电时间常数的物理意义是什么?
它有那些表示形式?
各种表示式各说明了哪些关系?
机电时间常数的物理意义是ns-n=GD2n0dn/375Tstdt
τm=GD2n0/375Tst是反映机电传动系统机械惯性的物理量,表达形式有τm=GD2n0/375Tst和τm=ΔnLGD2/375TL和τm=GD2ns/375Td
4.6加快机电传动系统的过渡过程一般采用哪些方法?
加快机电传动系统的过渡过程一般采用1减少系统GD2.2增加动态转矩Td.
4.7为什么大惯量电动机反而比小惯量电动机更为人们所采用?
大惯量电动机电枢作的粗短,GD2较大但它的最大转矩约为额定转矩的5到10倍,快速性能好,且低速时转矩大,电枢短粗,散热性好过载持续时间可以较长.
第五章
5.2将三相异步电动机接三相电源的三根引线中的两根对调,此电动机是否会反转?
为什么?
答:
如果将定子绕组接至电源的三相导线中的任意两根线对调,例如将B,C两根线对调,即使B相遇C相绕组中电流的相位对调,此时A相绕组内的电流导前于C相绕组的电流2π/3因此旋转方向也将变为A-C-B向逆时针方向旋转,与未对调的旋转方向相反.
5.4当三相异步电动机的负载增加时,为什么定子电流会随转子电流的增加而增加?
因为负载增加n减小,转子与旋转磁场间的相对转速(n0-n)增加,转子导体被磁感线切割的速度提高,于是转子的感应电动势增加,转子电流特增加,.定子的感应电动使因为转子的电流增加而变大,所以定子的电流也随之提高.
5.5三相异步电动机带动一定的负载运行时,若电源电压降低了,此时电动机的转矩、电流及转速有无变化?
如何变化?
若电源电压降低,电动机的转矩减小,电流也减小.转速不变.
5.6有一台三相异步电动机,其技术数据如下表所示。
型号
PN/kW
UN/V
满载时
Ist/IN
Tst/TN
Tmax/TN
nN/r·min-1IN/AηN×100cosφ
Y132S-6
3
220/380
96012.8/7.2830.75
6.5
2.0
2.0
试求:
①线电压为380V时,三相定子绕组应如何接法?
②求n0,p,SN,TN,Tst,Tmax和Ist;
③额定负载时电动机的输入功率是多少?
1线电压为380V时,三相定子绕组应为Y型接法.
2TN=9.55PN/nN=9.55*3000/960=29.8Nm
Tst/TN=2Tst=2*29.8=59.6Nm
Tmax/TN=2.0Tmax=59.6Nm
Ist/IN=6.5Ist=46.8A
一般nN=(0.94-0.98)n0n0=nN/0.96=1000r/min
SN=(n0-nN)/n0=(1000-960)/1000=0.04
P=60f/n0=60*50/1000=3kw
3η=PN/P输入
P输入=3/0.83=3.61kw
5.7三相异步电动机正在运行时,转子突然被卡住,这时电动机的电流会如何变化?
对电动机有何影响?
答:
电动机电流会迅速增加,如果时间稍长电机有可能会烧毁.
5.10三相异步电动机为什么不运行在Tmax或接近Tmax的情况下?
答:
根据异步电动机的固有机械特性在Tmax或接近Tmax的情况下运行是非常不稳定的,有可能造成电动机的停转。
5.11有一台三相异步电动机,其铭牌数据如下:
PN/kW
nN/r·min-1
UN/V
ηN×100
cosφN
Ist/IN
Tst/TN
Tmax/TN
接法
40
1470
380
90
0.9
6.5
1.2
2.0
△
1当负载转矩为250N·m时,试问在U=UN和U`=0.8UN两种情况下电动机能否启动?
TN=9.55PN/nN
=9.55*40000/1470
=260N.m
Tst/TN=1.2
Tst=312Nm
Tst=KR2U2/(R22+X202)
=312Nm
312Nm>250Nm所以U=UN时电动机能启动。
当U=0.8U时Tst=(0.82)KR2U2/(R22+X202)
=0.64*312
=199Nm
Tst2欲采用Y-△换接启动,当负载转矩为0.45TN和0.35TN两种情况下,电动机能否启动?
TstY=Tst△/3
=1.2*TN/3
=0.4TN
当负载转矩为0.45TN时电动机不能启动
当负载转矩为0.35TN时电动机能启动
3若采用自耦变压器降压启动,设降压比为0.64,求电源线路中通过的启动电流和电动机的启动转矩。
IN=PN/UNηNcosφN√3
=40000/1.732*380*0.9*0.9
=75A
Ist/IN=6.5
Ist=487.5A
降压比为0.64时电流=K2Ist
=0.642*487.5=200A
电动机的启动转矩T=K2Tst=0.642312=127.8Nm
5.13线绕式异步电动机采用转子串电阻启动时,所串电阻愈大,启动转矩是否也愈大?
答:
线绕式异步电动机采用转子串电阻启动时,所串电阻愈大,启动转矩愈大
5.14为什么线绕式异步电动机在转子串电阻启动时,启动电流减小而启动转矩反而增大?
答:
Tst=KR2U2/(R22+X202)当转子的电阻适当增加时,启动转矩会增加。
5.15异步电动机有哪几种调速方法?
各种调速方法有何优缺点?
1调压调速这种办法能够无级调速,但调速范围不大
2转子电路串电阻调速这种方法简单可靠,但它是有机调速,随着转速降低特性变软,转子电路电阻损耗与转差率成正比,低速时损耗大。
3改变极对数调速这种方法可以获得较大的启动转矩,虽然体积稍大,价格稍高,只能有机调速,但是结构简单,效率高特性高,且调速时所需附加设备少。
4变频调速可以实现连续的改变电动机的转矩,是一种很好的调速方法。
5.16什么叫恒功率调速?
什么叫恒转矩调速?
恒功率调速是人为机械特性改变的条件下,功率不变。
恒转矩调速是人为机械特性改变的条件下转矩不变。
5.18异步电动机有哪几种制动状态?
各有何特点?
异步电动机有三种反馈制动,反接制动和能耗制动
.反馈制动当电动机的运行速度高于它的同步转速,即n1.>n0时一部电动机处于发电状态.这时转子导体切割旋转磁场的方向与电动机状态时的方向相反.电流改变了方向,电磁转矩也随之改变方向..
反接制动电源反接改变电动机的三相电源的相序,这就改变了旋转磁场的方向,电磁转矩由正变到负,这种方法容易造成反转..倒拉制动出现在位能负载转矩超过电磁转矩时候,例如起重机放下重物时,机械特性曲线如下图,特性曲线由a到b,在降速最后电动机反转当到达d时,T=TL系统到达稳定状态,
ba
d
能耗制动首先将三项交流电源断开,接着立即将一个低压直流电圆通入定子绕组.直流通过定子绕组后,在电动机内部建立了一个固定的磁场,由于旋转的转子导体内就产生感应电势和电流,该电流域恒定磁场相互作用产生作用方向与转子实际旋转方向相反的转矩,所以电动机转速迅速下降,此时运动系统储存的机械能被电动机转换成电能消耗在转子电路的电阻中.
5.19试说明鼠笼式异步电动机定子极对数突然增加时,电动机的降速过程。
N0=60f/pp增加定子的旋转磁场转速降低,定子的转速特随之降低.
5.24一般情况下,同步电动机为什么要采用异步启动法?
答:
因为转子尚未转动时,加以直流励磁,产生了旋转磁场,并以同步转速转动,两者相吸,定子旋转磁场欲吸转子转动,但由于转子的惯性,它还没有来得及转动时旋转又到了极性相反的方向,两者又相斥,所以平均转矩为零,不能启动.
第六章
6.2何谓“自转”现象?
交流伺服电动机时怎样克服这一现象,使其当控制信号消失时能迅速停止?
答:
自转是伺服电动机转动时控制电压取消,转子利用剩磁电压单相供电,转子继续转动.
克服这一现象方法是把伺服电动机的转子电阻设计的很大,使电动机在失去控制信号,即成单相运行时,正转矩或负转矩的最大值均出现在Sm>1的地方.当速度n为正时,电磁转矩T为负,当n为负时,T为正,即去掉控制电压后,单相供电似的电磁转矩的方向总是与转子转向相反,所以是一个制动转矩.可使转子迅速停止不会存在自转现象
第八章
8.3若交流电器的线圈误接入同电压的直流电源,或直流电器的线圈误接入同电压的交流电源,会发生什么问题?
答:
若交流电器的线圈误接入同电压的直流电源,会因为交流线圈的电阻太小儿流过很大的电流使线圈损坏.直流电器的线圈误接入同电压的交流电源,触点会频繁的通短,造成设备的不能正常运行.
8.5在交流接触器铁心上安装短路环为什么会减少振动和噪声?
答:
在线圈中通有交变电流时,再铁心中产生的磁通是与电流同频率变化的,当电流频率为50HZ时磁通每秒有100次通过零,这样所产生的吸力也为零,动铁心有离开趋势,但还未离开,磁通有很快上来,动铁心有被吸会,造成振动.和噪声,因此要安装短路环.
8.7电磁继电器与接触器的区别主要是什么?
答:
接触器是在外界输入信号下能够自动接通断开负载主回路.继电器主要是传递信号,根据输入的信号到达不同的控制目的.
8.8电动机中的短路保护、过电流保护和长期过载(热)保护有何区别?
答:
电动机中的短路保护是指电源线的电线发生短路,防止电动机过大的电枢电路而损坏.自动切断电源的保护动作.
过电流保护是指当电动机发生严重过载时,保护电动机不超过最大许可电流.
长期过载保护是指电动机的短时过载保护是可以的,但长期过载时电动机就要发热,防止电动机的温升超过电动机的最高绝缘温度.
8.9过电流继电器与热继电器有何区别?
各有什么用途?
答:
过电流继电器是电流过大就断开电源,它用于防止电动机短路或严重过载.热继电器是温度升高到一定值才动作.用于过载时间不常的场合.
8.10为什么热继电器不能做短路保护而只能作长期过载保护?
而熔断器则相反,为什么?
答:
因为热继电器的发热元件达到一定温度时才动作,如果短路热继电器不能马上动作,这样就会造成电动机的损坏.而熔短期,电源一旦短路立即动作,切断电源.
8.11自动空气断路器有什么功能和特点?
答:
功能和特点是具有熔断器能直接断开主回路的特点,又具有过电流继电器动作准确性高,容易复位,不会造成单相运行等优点.可以做过电流脱扣器,也可以作长期过载保护的热脱扣器.
8.12时间继电器的四个延时触点符号各代表什么意思?
8.13机电传动装置的电器控制线路有哪几种?
各有何用途?
电器控制线路原理图的绘制原则主要有哪些?
答:
电器控制线路有1:
启动控制线路及保护装置.2正反转控制线路.3:
多电动机的连锁控制线路.4:
电动控制线路.5:
多点控制线路.6:
顺序控制线路.7:
多速异步电动机的基本控制线路.8:
电磁铁.电磁离合器的基本控制线路.
电器控制线路原理图的绘制原则主要有
1:
应满足生产工艺所提出的要求.
2:
线路简单,布局合理,电器元件选择正确并得到充分.
3操作,维修方便
4设有各种保护和防止发生故障的环节.
5能长期准确,稳定,可靠的工作.
8.14为什么电动机要设有零电压和欠电压保护?
答:
零电压和欠电压保护的作用是防止当电源暂时供电或电压降低时而可能发生的不容许的故障.,
8.15在装有电器控制的机床上,电动机由于过载而自动停车后,若立即按钮则不能开车,这可能是什么原因?
答:
有可能熔短器烧毁,使电路断电.或者是热继电器的感应部分还未降温,热继电器的触点还处于断开状态.