白光LED荧光粉的制备和发光性能研究.docx

上传人:b****4 文档编号:11719201 上传时间:2023-03-31 格式:DOCX 页数:28 大小:1MB
下载 相关 举报
白光LED荧光粉的制备和发光性能研究.docx_第1页
第1页 / 共28页
白光LED荧光粉的制备和发光性能研究.docx_第2页
第2页 / 共28页
白光LED荧光粉的制备和发光性能研究.docx_第3页
第3页 / 共28页
白光LED荧光粉的制备和发光性能研究.docx_第4页
第4页 / 共28页
白光LED荧光粉的制备和发光性能研究.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

白光LED荧光粉的制备和发光性能研究.docx

《白光LED荧光粉的制备和发光性能研究.docx》由会员分享,可在线阅读,更多相关《白光LED荧光粉的制备和发光性能研究.docx(28页珍藏版)》请在冰豆网上搜索。

白光LED荧光粉的制备和发光性能研究.docx

白光LED荧光粉的制备和发光性能研究

白光LED用Na3MgZr(P04)3:

R(R二Dy3+,Eu3+,Sm3+)荧光粉

的制备和发光性能研究

口光发光二极管(lightemittingdiodes,LED)因其节能环保等显著优势,被广泛誉为笫四代照明光源。

口光LED的实现是将荧光粉涂覆在LED芯片上,利用LED芯片发出的较短波长的光,激发荧光粉发出较长波长的可见光。

荧光粉性能的好坏直接影响LED的使用,因而寻求新型荧光粉是一种重要的工作。

本论文用高温固相法制备了Na3MgZr(PO4)3:

R(R=Dy3+,Eu3+,Sm3+)oNa?

MgZr(PO4)3:

0.02Dy*的色坐标为(0.403,0.416),分布在白光区域,Na?

MgZr(PO4)3:

O.OlEi产的色坐标为(0.648,0352),Na3MgZr(PO4)3:

0.01Sm3+的色坐标为(0.610,0.389),分布在红光区域。

对样品进行了XRD测试,并对其发光性能(激发,发射光谱等)做了分析研究,结果表明,以Na3MgZr(PO4)3为基质的荧光粉具有应用于W-LED的潜力。

1.1LED的历史和现状

发光二极管LED(LightEmittingDiode)被称为第四代照明光源,自发明以来,因其发光效率高、体积小、寿命长、节能、环保、高亮度、低功耗等优点,具有广阔的市场与潜在照明应用前景而受到广泛关注。

近年来,关于LED方面的研究是科学研究的热门方向。

1907年HenryJosephRound第一次利用SiC(碳化硅)观察到电致发光现象;—.十年代晚期BernhardGudden和RobertWichard在德国利用用从锌硫化物与铜中提炼的黄磷发光;在1936年,GeorgeDestiau出版了一个关于ZnS粉末发射光的报告;20世纪50年代,英国科学家在电致发光的实验中使用半导体GaAs(神化镣)发明第一个具有现代意义的LEDo60年代末,在GaAs(碑化稼)的基板上使用磷化物发明了第一个可见的红光发光二级管,到70年代,随着研究的不断深入,LED先后发出灰口绿光、黃光、纯绿色光;80年代,随着GaP(磷化镣)、ALP(磷化铝)的发明和使用使得第一代高亮度的LED的诞生。

到20世纪90年代,先后釆用GaPAlIn(锢铝磷化稼)、GaP(磷化稼)和GalnN(钢氮镣),使LED的光效得到大幅度的提高。

90年代末科学家们利用GnN(氮化稼)蓝光LED芯片与Y3A15O12:

Ce3+黄色荧光粉复合第一次发出白光,使得LED取得了历史性的突破,自此白光LED引起越来越多的关注。

第一个商用发光二级管自20世纪60年代初问世以来,经过50多年的努力,先后研制成功了红,橙,绿,蓝色LED以及红外、紫外LED,并通过材料合成方法的改进和新材料的发现,LED的研究和生产得到了迅速地发展,LED的发光效率提高了近1000倍,这也使得LED的应用领域得到了迅速的扩展,更好的应用于各工业生产以及日常生活中。

1.2LED的结构

LED的结构如图1.1所示,发光二级管为一种固态的半导体光源,是结型发光器件。

LED主要是由PN结芯片、电极、光学系统及附件等组成,LED芯片是由P型和N型半导体组成的,主要功能是把电能转化为光能。

晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个芯片被环氧树脂封装起来。

1・3LED的发光原理

发光二极管是以二极管为主体的元件,其是山元素周期表中1IIA与VA,或1【A与VIA元素构成的半导体,其核心是P-N结,根据半导体原理可知,当给LED-个正向电压时,将使得p区空穴往n区移动,同时n区的电子往p区移动,这样会使得电子与空穴在p区与n区结合层相遇,电子与空穴结合的过程中,多余的能量会以光的形式释放;当LED加反向电压时,载流子难以流入P-N结,故不发光。

LED发光的原理如图1.2所示。

LED所发出的光涵盖红外,可

见光以及紫外区,是山形成P・N结的材料决定。

图1.2LED发光原理示意图

1.4白光LED的主要实现方式

发光二极管是单色光源,而白光是一种多颜色的混合光,因此我们想要获得白光,必须找出其他方式合成口光。

目前获得白光的主要途径有两种:

(1)把半导体芯片和荧光粉组合在一起,芯片发出的短波长的光通过荧光粉转换成可见光,最后复合成口光。

这种荧光粉转换的白光LED,通常缩写成pc-LED,即将发光材料(荧光粉)涂在LED芯片上,利用LED激发荧光粉发光。

(2)将发射红、绿、蓝三基色光的多个半导体芯片组合起来发射白光。

这种方式获得的白光LED的优点是能量损耗少,发光效率高。

但山于不同发光颜色的芯片劣化速率不同,造成LED发光偏离白光,且设计复杂,电路控制困难。

因此,pc-LED是获得白光的主要途径。

pc-LED获取白光主要有两种方式:

(1)利用蓝色LED芯片作为激发源,在芯片上涂覆能被蓝光激发的黃色荧光粉(或者红色和绿色荧光粉),芯片发出的蓝光和荧光粉发出的光复合成白光;

(2)利用发射近紫外光(380-410nm)或紫外光(370-380nm)的LED芯片作为激发源,与一种口光发射的荧光粉组合,或者与分别发射红光、绿光和蓝光等的三(多)种荧光粉组合,荧光粉发出的三色光经透镜作用复合成白光。

蓝光芯片与黄色荧光粉复合获得口光的方式具有成本低效率高的特点,故而被广泛使用,但在使用的过程中芯片的发射会影响白光的组成,出现显色性及色温随电流变化的现象,影响到LED的使用效果。

而近紫外

芯片与三基色荧光粉复合获得的口光的方式则不存在类似问题,其所有口光成分都来自于荧光粉本身,因此荧光粉的质量将会影响到pc-LED的使用。

1.5荧光粉的发光原理

无机荧光材料主要是山基质和活化剂两部分组成,有时候会加入敬化剂共同掺杂。

通常悄况下,活化剂和敬化剂掺杂的量都很少,会部分取代基质晶格中的原有离子,但不会改变基质的晶体结构。

活化剂作为发光中心,会将外来的激发能吸收后发射出可见光,敬化剂作为能量传递的媒介,把吸收的能量传递给活化剂,以此来提高发光效率和改变荧光粉发光颜色。

光子

电子

电场

E庐激发态

Eu3f

基质吸收•

能量传递

图1.3荧光粉的发光原理

如图1.3所示是荧光粉的发光原理图。

基质吸收激发能后将能量传递给激活剂,激活剂电子受激发后从基态跃迁到激发态,山于电子在激发态很不稳定,会很快从激发态再跃迁回基态,在此过程中能量会以光的形式释放出。

1.6白光LED用稀土荧光粉的发光原理

161稀土元素的电子组态

稀土是稀土元素的简称,包括化学元素周期表中的關系元素——La(镇]),Ce(肺),Pr(错),Sm(锣),Dy(舗),Eu($有),Lu(错),Yb(it),Tin(铉),Nb(钦),Ho(钦)Er(饵),Tb(絨),Gd(轧),Pm(ffi),以及与镉系元素性质相近的IIIB族元素Sc(铳)和Y梓乙)。

舗(Ln)系原子(57-71)的电子组态:

lSnsnP^S^P^dWS'APUdWf°'145$25戸°5€1°'16$2;Sc(铳)原子的电子组态:

;化(Y)原子的电子组态:

Y39:

lS22S22P(,3S23P(,3d104S24P<,4d,5S2o如表格1所示。

162稀土元素的能级跃迁的原理

在稀土金属中,4f电子位于原子内层轨道,5s25p6电子云对其有屏蔽作用,4f轨道伸展的空间很小,所以受结晶场、配位体场等的影响很小。

但自旋与轨道的相互作用都很大,使得f—f电子轨道L和自旋S相互耦合作用,4f分裂成许多能级有微小差别的能级亚层,每一个亚层对应一个光谱项2S+1L。

稀土化合物的发光是基于它们的4f电子在f-f组态之间或f-d组态之间的跃迁。

当稀土离子吸收外来能量后,4f电子从基态激发到激发态;当4f电子从激发态返回到基态时能量以光的形式释放,发出不同波长的光。

稀土离子的4f电子跃迁特性以及丰富的能级使得稀土应用于各类荧光材料中。

稀土发光材料具有很多优点:

发光谱带较窄,发光效率较高,有较强的光吸收能力,光谱范围大,物理和化学性能稳。

这些优异的性能使得稀土化合物有很大的应用领域。

II询,稀土发光材料广泛应用于照明光源,信息显示,医学放射图像等领域。

稀土发光材料有很好的应用前•景,因此研究和开发新型荧光材料有重要的意义。

夕卜韶电子层结构

原子半径j

离子半径

3s

3?

3d

4s4p

4d

4f

5s

5p

5d

6s

(nm)

RE*5(nm)

2

6

1

2

0.1641

0.0732

2

6

10

2

6

1

2

0.1803

0.0893

2

6

10

2

6

10

2

6

1

2

0.1877

0.1061

2

6

10

2

6

10

1

2

6

1

2

0.1824

0.1034

2

6

10

2

6

10

3

2

6

2

0.1828

0.1013

2

6

10

2

6

10

4

2

6

2

0.1822

0.0995

2

6

10

2

6

10

5

2

6

2

0.0979

2

6

10

2

6

10

6

2

6

2

0.1302

0.0964

2

6

10

2

6

10

7

2

6

2

0.1983

0.0950

2

6

10

2

6

10

7

2

6

1

2

0.1801

0.0038

2

6

10

2

6

10

9

2

6

2

0.1783

0.0923

2

6

10

2

6

2

6

2

0.1775

0.0908

2

6

10

2

6

2

6

2

0.1767

0.0894

2

6

10

2

6

2

6

2

0.175S

0.0881

2

6

10

2

6

2

6

2

0.1747

0.087

2

6

10

2

6

10

14

2

6

2

0.1939

0.0858

2

6

10

2

6

2

6

1

2

0.1735

0.085

元寿

化合价

符号

+3

+3

+3

+3+4

+3+4

+3

+3

+2+3

+2+3

十3

十3+4

+3

十3

Tm

+3

+2+3

Yb

Lu

表1.1稀土原子电子组态和原子.三价离子半径

pmsm鬆取TbeyHOfe

1.6.3白光LED用稀土荧光粉的发光机理

稀土荧光粉发光过程就是外界能量传递给发光中心,发光中心发生跃迁,之后返回基态,能量以光的形式释放,稀土发光材料的能级跃迁方式主要有三种:

(1)4f-4f跃迁。

f-f跃迁属于禁戒跃迁,在近紫外和可见光区吸收很弱。

但当本其与基质晶体场相互配合,基质吸收激发能量传递给稀土离子引起f-f跃迁时可导致其特征发射显著提高。

f-f跃迁的发射波长与基质无关,属于特征发射光谱,且浓度淬灭小,发射光谱热稳定性好,谱线独特丰富,涵盖了紫外到红外所有波段,故而被常用在各类荧光粉中。

(2)5d-4f跃迁。

这种跃迁是一种电子壳层之间的跃迁,但易受到晶体场的影响。

该跃迁能量传递能量传递儿率较大,光子能量高,辐射寿命短,可用于高时间分辨率的医用成像设备中。

(3)电荷迁移过程。

电荷迁移过程是指两种不同的分子(或原子)之间的一种交换作用,或者是一个大分子不同位置之间的交换作用。

1.7本论文基本设计思路

磷酸盐具有价格低廉、声子能量低、晶体场环境丰富、具有较高的热稳定性和化学稳定性等特点,被广泛应用于各类荧光材料中,尤其是稀土离子掺朵的磷酸盐化合物表现出很好的发光特性。

Dy"离子有两个最强的发射峰分别为4F9/2-6H15/2和4F9/#H⑸2,位于蓝色和黄色波段区间,当黄色和蓝色比例适中时将发射口光;Eu3+,Sm”激活的红色荧光材料,光谱呈现窄带发射,复合成的口光比宽带发射谱复合成的白光亮度要高。

本论文的工作是以Na3MgZr(PO4)3为基质,分别掺杂Dy3+,Eu3+,Sn?

+离子,通过高温固相反应,制备可以用于口光LED的稀土磷酸盐荧光粉,并利用XRD、荧光光谱等手段来研究所得样品的发光性能。

第二章实验和测试表征手段

2・1样品的制备方法

本实验采用高温固相合成法制备以NasMgZr(PO4)3为基质,掺杂稀土离子RE(Dy3+,Eu3+,Sm3+)的LED荧光粉,以碳酸钠(Na2CO3),碱式碳酸镁(4MgCO3Mg(OH)2-5H2O),硝酸箔(Zr(NO3)4-5H2O),磷酸氢二鞍((NH4)2HPO4),氧化钩(Eu2O3),氧化鏑(Dy2O3),氧化锣(Sm2O3)为原料,按照化学计量比用电子天平精确称取。

称好后放入玛瑙研钵中并加入儿滴无水乙醇作为分散剂充分研磨,研磨过程中酒精挥发,最终得到研磨均匀的白色粉末。

将其置于氧化铝堆烟中,在电阻炉中1050°C下锻烧一段时间,待样品冷却后研磨,即可得到一系列粉末样品,放入样品管准备测XRD,发光等性能。

固相反应是通过固体原子或离子的扩散和运输来完成的。

反应最初是在反应物接触点处发生的,之后逐渐扩散至物相内部进行反应。

因此,将反应物充分混合均匀,以增大反应物的接触面积使原子或离子的扩散运输容易进行,提高反应速率。

另外,在一定高温下长时间反应,可提高样品的结晶度和纯度。

2.2主要实验试剂及仪器

本实验中涉及到试验试剂和药品如下表所示:

表2.1:

实验所使用的试剂

名称

化学式

分子量

纯度

产地

碳酸钠

Na2CO3

100.0869

99.99%

国药集团化学试剂有限公司

碱式碳酸镁

4MgCO3-Mg(OH)2-5H2O

485.6517

A・R・

上海沪试

硝酸错

Zt(NO3)4-5H2O

429.33

AR

国药集团化学试剂有限公司

磷酸氢二鞍

(NH4)2HPO4

132.0563

A・R・

国药集团化学试剂有限公司

氧化舖

Eu2O3

351.9262

99.99%

甘肃稀土公司

氧化鏑

Dy2O3

372.9982

99.99%

甘肃稀土公司

氧化锣

Sm2O3

348.7182

99.99%

甘肃稀土公司

表2.2:

实验所用的仪器

实验仪器与设备

型号

生产厂家

电子天平

SartoriusBP221S

赛多利斯有限公司

玛瑙研钵

上海新诺仪器玛瑙工艺厂

快速升温箱式炉

KL-10A

MTICORPERATION

X射线衍射仪

RigakuD/max-2400

日本日立

高温管式气氛炉

GSL-1400X

合肥科晶材料有限公司

刚玉堆圾

1*1cm2

洛阳市炬威电炉仪器厂

2.3稀土离子激活的Na3M0r(PO4)3基荧光粉的制备

按照相应的化学计量比,用电子天平尽量精确称取相应的反应物

(Na2CO3,MgO,Zr(NO3)4,(NH4)2HPO4,Eu2O3,Dy2O3,Sm2O3)放入玛瑙,加入适量无水乙醇研磨。

样品粉末混合均匀后,将样品置入氧化铝堆竭放入高温电阻炉,1050°C保温8小时后冷却,取出研磨均匀得到样品。

制备样品:

Na3MgZr(PO4)3:

xDy2O3(x=0.002,0.005,0.01,0.02,0.03)Na3MgZr(PO4)3:

xEu2O3(x=0.002,0.005,0.01,0.02,0.03)Na3MgZr(PO4)3:

xSm2O3(x=0.002,0.005,0.01,0.02,0.03)

2.4性能测试与表征

2.4.1X射线粉末衍射(XRD)

样品的物相用RigakuD/max・2400型X射线粉末衍射仪进行分析。

衍射条件:

工作电压为40KV,工作电流为60mA,X射线发生器采用CuKa,波长1.54178A,扫描步长0.02°,扫描速率为10°/min,扫描范围10〜90。

°

2.4.2荧光光谱

荧光光谱包括激发光谱和发射光谱。

固定发射波长,以不同波长的入射光激发荧光物质,以荧光强度F对激发波长入作图,即得到激发光谱。

激发光谱表示不同激发波长下所引起物质发射某一波长荧光的相对效率。

固定激发光波长在kx处,然后对发射光谱扫描,测定各种波长下相应的荧光强度,以荧光强度F对发射波长入作图,得到发射光谱图。

发射光谱表示在所发射的荧光中各种波长组分的分布惜况及相对强度。

本论文的工作利用FLS920T・VM504光谱仪系统(EndinburghCorporation,Scotland)测试样品的激发和发射光谱。

图2.1为CIE色坐标图。

从色坐标图中,我们不仅可以知道样品的颜色,还可获得样品的色彩纯度,这对表征荧光粉性能非常重要。

使用发射光谱可计算样品的色坐标值,我们采用CIE1931xy软件(版本:

1.6.0.2)来计算样品的色坐标值。

2.4.3衰减

使用FLS920T-VM504光谱仪系统(EndinburghCorporation,Scotland)测试样品的衰减。

使用TAP-02温度控制仪(天美(中国)科学仪器有限公司)结合的荧光光谱测试样品的热稳定性。

该温度控制仪使用Cu加热台和石英片作为样品槽,测试范围从20°C-230°C,每隔30°C测量一次样品的发射光谱。

2.4.4红外光谱

利用傅里叶变换红外光谱仪(FTIR,Nicolet公司NEXUS670)对样品进行分析和鉴定。

红外光谱是山于分子的振动和转动产生的,不同的分子或基团有不同的红外吸收光谱,因此可以对物质定性鉴定和分析。

第三章稀土离子激活Na3MgZr(PO4)3基荧光粉的制备及

性能研究

3・1样品的制备

3.1.1Na3MgZr(PO4)3的制备

Na3MgZr(PO4)3分别单独掺杂Dy3+,Eu3+,Sn?

+。

通过高温固相法,先在800C条件下预烧2h,然后在1050°C条件下保温8h,所有加热过程都在大气气氛下进行,升温速度为5°C/mino以高纯的Na2CCh,MgO,(NH02HPO4,Zr(NO3)4作为原料,掺杂物分别是Dy2O3,E112O3,Sm2O3,在标准摩尔比例下进行掺杂,分别作了一系列:

0.002,0.005,0.01,0.02,0.03。

获得的掺杂物进行XRD测试,PL测试等。

3.2结果与讨论

3.2.1Na3MgZr(PO4)3基质

3.2.1.1红外吸收光谱分析

图3.1Na3MgZr(PO4)3红外吸收光谱

图3」为Na3MgZr(PO4)3红外吸收光谱,从图中可以看出,位于3437cm-1波长的吸收峰为缔合-OH的特征吸收峰,磷酸根(PO43-)的弯曲振动特征波长为1135cm-1和552cm-1,而其伸缩振动则在599cm-1处,样品为磷酸盐材料,具有较好的结晶度。

3.2.1.2结构分析

图3.2为Na3MgZr(PO4)3粉末样品的XRD衍射数据,通过Rietveld全谱拟合方法得到了精细化结构的XRD图谱。

红色的实线为计算拟合的数据,黑色十字架为实验模式,黑色短的垂直线显示布拉格的位置,蓝色线表示计算模式和汁算结果的差距。

从图中可以看出,实验测得的数据和拟合的数据差距较小。

我们也可以利用图中的信息推知Na3MgZr(PO4)3的结构、空间群和晶胞参数。

6000

5000

4000

3000

2000

1000

0

-1000

【X!

**!

**丈STXXX

Experimentaldata―—FittingdataDifference

muminrmiiiiiiiiiiinmi

1020304050607080

2-Theta(degree)

图3.2Na3MgZr(PO4)3基质的结构精修图

表3」为Na3MgZr(PO4)3晶格参数,图3.3所示为Na3MgZr(PO4)3的晶体结构图,山图知在Na3MgZr(PO4)3中,02-离子构成正四面体结构,P原子位于四面体中心,磷氧四面体以Na原子共顶连接构成空间网络,Mg、Zr原子位于其中。

 

LatticeParameters(晶格参数)

LatticeSpaceR-3

Trigonal

Type:

Group:

2/C

Paramete

r

Value

Refined?

a

8.84121±0.00500

Yes

b

&84121±0.00500

Yes

c

22.26174±0.01275

Yes

90.00000

No

90.00000

No

120.00000

No

表3.1晶格参数

图3・3Na3MgZr(PO4)3基质的晶体结构图

3.2.2Na3MgZr(P04)3:

xDv203(0.002WxW0.03)

3.2.2.1XRD测试及结果分析

图3.2为N“3MgZr(PO4)3:

xDy2O3系列粉末样品在1050°C保温8h后的XRD图谱。

基质(x=0)以及各种Dy3+摩尔比例(0.2%,0.5%,1%,2%,3%)掺杂下的样品,均与标准卡片PDF#41-0503相匹配,其衍射峰与精修的XRD衍射光谱图对比,未发现朵质相的衍射峰,即使掺朵高浓度的Dy+也未没有发现杂质相的衍射峰,衍射峰都能被指标化,说明掺入少量的Dy3+成功地取代了Na+离子,并未改变Na3MgZr(PO4)3的晶体结构,所以一系列样品中每个样品都是Na3MgZr(PO4)3的单相。

I「

1,

i!

/.

X=0.020亠心上一一入4-一亠

一丄丄

1J

X=0.010

IlLi*

X=0.005

1

1X

4_J

X=0.002

丄Jj

LJ

L.一

X=0

11.

i

11

PDF#41-0503

hliiji11iilili

10203040506070

2-Theta(degree)

(・n・e)Msua>c_

图3.4Na3MgZr(P04)3:

xDy203(0.002WxW0.03)系列样品的XRD图

3・222荧光光谱分析

5.5x10’

5.0x106-

4.5x10c-

4.0x100・

3.5x10

3.0x106-

2.5x10*・2.0x106-1.5x106-1.0x40J

5.0x10"-

0.0・

Wavelength(nm)

图3.5Na3MgZr(P04)3:

xDy203(0.002x0.03)系列样品的激发光谱

图为Na3MgZr(P04)3:

xDy203(0.002WxW0.03)系列粉

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1