多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春.docx

上传人:b****5 文档编号:11705139 上传时间:2023-03-30 格式:DOCX 页数:12 大小:26.45KB
下载 相关 举报
多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春.docx_第1页
第1页 / 共12页
多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春.docx_第2页
第2页 / 共12页
多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春.docx_第3页
第3页 / 共12页
多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春.docx_第4页
第4页 / 共12页
多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春.docx

《多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春.docx》由会员分享,可在线阅读,更多相关《多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春.docx(12页珍藏版)》请在冰豆网上搜索。

多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春.docx

多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用赵彦春

多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用_赵彦春

第17卷 第4期2004年8月

100327713/2004/04236926化学物理学报Vol.17,No.4Aug.2004

多孔阳极氧化铝膜的制备及其

在一维纳米材料合成中的应用

赵彦春, 陈 淼33, 徐 洮, 刘维民, 刘 相

(中国科学院兰州化学物理研究所固体润滑国家重点实验室,兰州 730000)3

摘 要:

 从一维纳米材料的研究范畴入手,综述了多孔阳极氧化铝膜的结构特征、形成机理以及作为模板在合

成纳米导电聚合物、纳米金属、纳米半导体、纳米复合材料及碳纳米管等方面的研究与应用的最新进展,揭示了多

孔阳极氧化铝模板在合成与组装纳米新材料方面的重要作用.

关键词:

 多孔阳极氧化铝膜;制备;应用

中图分类号:

TQ153.2

文献标识码:

A

PreparationofPorousandItsNanomaterials3

Yanchun, ChenMiao33, XuTao, LiuWeimin, LiuXiang

(StateKeyLaboratoryofSolidLubrication,LanzhouInstituteofChemicalPhysics,ChineseAcademyofSciences,Lanzhou 730000)Abstract Thescienceandtechniqueofnanoscalematerialshavebeenfocasedontheimportantpotentialapplications,suchaselectricity,optics,chemistryindustry,ceramic,medicineandsoon.Theporousanodicaluminumoxidefilmhasreceivedsignificantattentionduetoitsapplicationinthepreparationofone2dementionalnanostructuredmaterials.Thisprocessinvolvessynthesizingdesiredmaterialswithintheporesoftheporousanodicaluminumoxidefilm.Thestructuralfeaturesandporeformationtheoriesofporousaluminumoxidetemplateshavebeenreviewed.Therecentprogressinthefabricationofthenano2scalematerials,suchasconductivepolymers,metals,semiconductors,compositesandcarbontube,usingtheanodicaluminumoxidefilmasthetemplate,isalsoconcerned.Theimportanceofporousaluminatem2plateforthesynthesisofnovelnanomaterialshasbeenexhibited.

Keywords Porousanodicaluminumoxidefilm,Preparation,Application

1 引 言

铝质材料的阳极氧化是指将铝质材料引入适当

的电解液中,作为阳极通电处理,在表面生成一定厚

度的阳极氧化膜,以提高铝表面的耐磨、耐腐蚀以及

着色等能力.利用电化学氧化法制备的阳极氧化铝在工程中的应用已有100多年的历史,已被广泛地应用到防腐、耐磨、装饰、超过滤及电子器件等实践中[1].早在1932年人们就已认识到多孔阳极氧化铝膜(AAO)是由外部厚的多孔层及邻近铝基底的紧密的阻挡层构成[2].进入20世纪90年代,随着自组装纳米结构体系研究的兴起,这种带有高度有序的纳 3ProjectsupportedbytheProgramofHundredsTalentsofChineseAcademyofSciencesandMinistryofScienceandTechnologyof  China(2202AA302609,2003CB716200).

 33Correspondingauthor,E2mail:

miaochen@ Received25August2003;infinalform5December2003.

370

化 学 物 理 学 报

  第17卷

米级阵列孔道的纳米材料受到人们的重视.人们将

AAO作为模板来制备纳米材料和纳米阵列复合结构,并在磁记录、电子学、光学器件以及传感器等方面取得良好的研究成果.通过控制电解液种类、氧化电压及时间等因素,可控制膜的生长速度和溶解速度.因此,通过控制阳极氧化的制备条件,可以控制模板孔洞的分布及大小,孔洞直径为5~200nm,深度为几十纳米到上百微米.多孔AAO膜是一种宽带间隙材料(8.3eV),具有良好的热稳定性、化学稳定性和较高的热导率(0.46W/cmK).由此可见,对AAO模板的制备工艺及机理的研究具有重要的意

图1 多孔阳极氧化铝膜的理想结构示意图[4]

Fig.1 Schematicdrawingoftheidealizedstructure

ofanodicporousalumina[4]

义和诱人的应用前景.随着表征技术和制备工艺的

不断进步,人们已可以得到多种结构参数的AAO模板.本文就多孔阳极氧化铝模板(AAO)的制备及其在合成纳米材料方面的应用进行评述.

20世纪80年代以来,人们对多孔阳极氧化铝膜的

制备条件、结构以及形成机理进行了较多的研究[5-17].[18],根据这种观点,,电解液开始在,孔核的形成将使原来均匀分布的电场集中在孔底部区域,从而使孔道底部阻挡层的溶解速率和阻挡层/铝衬底界面出的氧化铝生长速率大大增强,最后溶解速率和生长速率将达到一动态平衡,进入多孔层的稳态生长阶段,最终得到连续的多孔层孔壁结构.徐洮等人则在以晶胞为单元的基础上,分别利用新的结构模型来描述多孔氧化铝结构的生长机制[19,20].Parkhutik等人根据实验中观察到的电流变化情况,提出了分为四个过程的稳态孔生长机制[21].Jessensky等人则提出一个基于力学原理的模型[22],认为在孔的底端瞬时发生的氧化反应使得材料的体积向垂直方向迅速膨胀,由于体积的增大,使得在氧化物内部产生了机械应力,不同孔道的机械应力相互排斥,导致了孔道之间距离相等促进了孔分布的有序性,该模型能较合理地解释孔生长过程中的有序形态的形成机理,但是它忽略了电场力在孔形成过程中的作用.

由于首次氧化产生的氧化膜存在着较多缺陷、膜孔分布不匀及孔径分布较宽等原因,后来发展了二次阳极氧化法,即将一次氧化膜经除膜液(H3PO42H2CrO4混酸)处理后,铝表面呈均匀分布的凹凸纹

2 多孔阳极氧化铝的制备及其形成过程

型:

阻挡型(barrier2type)).柠檬酸、硼酸、苹果酸,其厚度只有几十到几百个纳米.铝在具有一定溶解能力的电解液中经阳极氧化可以得到多孔型氧化铝膜,该类电解液有硫酸、磷酸、铬酸、草酸等.现以草酸为例说明其制备过程.铝片经真空热处理、表面脱脂及电化学抛光后,在草酸电解液中进行阳极氧化,其反应过程可表示如下[3]:

阴极反应:

∞2H++2e→H2ξ

C2O4

2-

+6H+4e→CH2OH?

COOH+H2O

+

阳极反应:

6OH--6e→3H2O+3[O]2Al+3[O]→Al2O3Al-3e→Al3+

H2C2O4-2e→2H++2CO2

在阳极氧化过程的最初数秒内形成均匀的非晶氧化层,随着氧化铝氧化层的生长,电压升高,电场增强,氧化层溶解速度加快,随之出现多孔层.Keller等在1953年报道了多孔阳极氧化铝的理想结构模型(图1)[4].该模型指出多孔层是由许多具有六面柱体状的晶胞组成,每个晶胞中央包含一个圆柱孔,孔垂直于衬底表面,而且孔与孔之间相互平行,每个孔与周围六个孔相邻,分布均匀,大小一致,排列规则有序,结构如图1所示

.

理,有利于下一次氧化时孔的有序生成和分布[23,24].在进行二次阳极氧化时,所用条件除时间外,其他条件与首次氧化基本相同,从而得到有序分

第4期

赵彦春等:

多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用371

布的孔道结构(图2)

.

AAO纳米孔道上的方法[28].化学镀的特点是金属沉

积从孔壁开始的.调节沉积时间,既可以得到中空的

纳米管,也可以得到实心的纳米线.但这种方法只能调节纳米管内径尺寸,而不能调节管的长度.3.3 化学聚合通过化学或电化学法使模板孔洞内的单体聚合成高聚物的管或丝的方法.这种方法可通过将模板浸入含有单体和引发剂的溶液中来完成.形成管或丝取决于聚合时间的长短,聚合时间短形成纳米管,随聚合时间的增加,管壁厚度不断增加,最后形成丝[29].3.4 溶胶2凝胶沉积法(Sol2gel)

通过物理或化学方法制得纳米级粒子的胶体溶液,将AAO模板浸入溶胶中使溶胶沉积在氧化铝模,(b)Cross2sectionofAAO

(a)Topsurfaceof

AAO

图2 多孔阳极氧化铝膜SEM形貌图

Fig.2 TheSEMimageofporousanodicalum3 用AAO利用AAO为模板合成纳米材料的方法适用范

围很广,在选择合成方法时需要注意以下几点:

①前体溶液对孔的浸润(即疏水/亲水性);②沉积反应速度的控制,防止孔洞通道口堵塞;③反应条件下膜的稳定性.下面介绍几种以AAO为模板合成纳米材料具体方法.3.1 电化学沉积

通过离子喷射或热蒸发使AAO表面及膜孔孔壁上涂上一层金属薄膜,以此膜作阴极,经电化学还原使要制备的材料沉积在AAO模板的孔道内,常适合用于在氧化铝模板孔内组装金属和导电高分子的纳米丝和纳米管[25,26].这种方法的一个突出优点是这些纳米线的长度可以通过改变实验条件加以控制,例如可通过控制沉积金属的量来获得具有不同长径比的金属纳米线阵列.控制纳米线的长度或长径比对其光学、磁学及电学性质有着重要影响[27].3.2 化学沉积

利用化学还原方法在膜表面与膜孔孔壁上涂上一层金属,形成镀层,通过控制沉积反应时间的长短制备出空心管状或实心线状纳米结构材料.该方法不同于电化学沉积,被镀的表面可以不必是导体.Martin等人报道了将金和其他金属从溶液中镀到

.],用溶胶2凝胶沉积法在,取决于模板在溶胶中的浸渍时间,浸渍时间短,得到纳米管,而浸渍时间长则得到纳米线.这表明溶胶粒子是吸附在AAO孔壁上,因为孔壁是带电荷的,带有相反电荷的溶胶粒子易被孔壁吸附.研究发现在孔内胶凝的速率要比在本体溶液中快,这可能是由于胶粒易吸附到AAO孔壁上,使溶胶粒子的局部浓度增大而造成的.

3.5 化学气相沉积法(CVD)

将孔壁上沉积有催化剂的模板置于高温炉中并通气体,使气体在孔壁上受热分解并沉积,根据反应时间及所通气体压力的不同可以制备出不同厚度的纳米管.该法主要用于制备碳纳米管等物质[31].影响化学气相沉积法应用于模板合成的一个主要障碍是其沉积速度太快,以至于在气体分子进入孔道之前,表面的孔就已被堵塞,因此,控制沉积速度是化学气相沉积法的关键.

4 用AAO合成纳米材料的应用及性质研究

4.1 合成导电聚合物

导电聚合物一般是一种具有大π键的共轭大环聚合物,并具有特定的功能基团.这类聚合物可利用电化学氧化其相应的单体而直接沉积在纳米孔洞内或在孔洞内通过引发聚合制得.由于该类聚合物本身是电活性的,因而在电催化作用及酶反应方面具有重要而广泛的潜在应用价值.利用电聚合法制备

372

化 学 物 理 学 报

  第17卷

导电聚合物时,虽然聚合物的单体可溶,但导电聚合物的聚阳离子形式是不溶的,因此,导电聚合物在孔壁上优先成核,控制时间的长短可以得到管壁由薄到厚的聚合物管或聚合物纤维.Martin等采用化学或电化学聚合法,通过控制聚合时间,分别得到薄壁、厚壁的聚合物纳米管及实心的聚合物纳米线[32-35].Li等用阳极氧化铝作为模板成功制备了均一有序的聚苯胺纳米纤维[36],该法是基于Gregory的工作[37]将氧化铝模板浸入预先冷至5℃下的含苯胺单体及引发剂的溶液中聚合2h,得到聚苯胺纳米纤维.在氧化铝模板中制得聚苯胺纤维仍保持氧化铝模板初始结构.单一聚苯胺纤维直径大约为200nm,纤维结构均一有序.Parthasarathy等也利用AAO

外可见吸收光谱[69].结果发现,当半导体纳米线的

直径小于25nm时,其吸收边相对于体相的吸收边产生蓝移,而且蓝移的幅度随着半导体纳米线直径的减小而增加,显示了明显的量子限域效应.4.4 合成碳纳米管

利用化学气相沉积法(CVD)用AAO作为模板可制备出碳纳米管阵列.Kyotani等用CVD法成功地制备了碳纳米管的阵列[70],以纳米孔径的铝阳极氧化膜为模板,通过丙烯气体的热分解作用使碳沉积在均匀分布的多孔层管壁上,得到两端开口且中空的碳纳米管.王成伟等也用此法制备出大面积高度取向的碳纳米管有序阵列膜[71],发现碳纳米管的长度和管径取决于AAO模板的厚度和孔径,碳纳米管的生长特性与模板的结构、、反应气体热解温度、.Che等PtRu,并研[72].Sui等以微[73,74],采用化学气相沉积法制备出了三维多枝碳纳米管.

模板合成了聚苯胺纤维[38],且实验发现聚苯胺纤维的导电率与其直径的大小成正比.4.2 合成纳米金属材料

自Possin于1970米金属纤维[39]以来,、,材料、磁记录材料等.通过电化学沉积或化学沉积可以制备出金属纳米管、纳米微粒、纳米棒及纳米纤维.Zhang等用氧化铝膜作为模板通过电化学沉积法制备出高度有序的直径为45nm的Au单晶纳米线阵列[40].此外,还有人利用该模板合成了Au纳米颗粒[41,42]、Ag纳米线[43,44\〗、Au量子点[45]、Cu[46]及Au棒纳米材料[47]等;用该模板可制备镍有序纳米孔洞阵列膜[48]、Co纳米线[49]、Fe量子点[50]、纳米铂电极[51,52]以及磁性纳米阵列[53].

4.3 合成半导体及无机复合物纳米材料

Martin等人用纳米粒子的溶胶浸泡多孔氧化铝

5 其他应用

由于阳极氧化铝膜具有纳米级微孔的特殊结

构,为研究开发新型的功能材料提供了一条全新的途径.如氧化铝膜所具有的纳米级微孔结构,为制备高性能的束状电极提供了有利条件[75].将阳极氧化铝膜用于制作光学及电学元件、太阳能选择性吸收膜[76]及分离膜也同样颇具特色.如将Au、Al、Ni元素分别沉积于阳极氧化铝膜的微孔中制成的偏光子,仅需膜厚1μm即可达到市售的棱晶式偏光子超过1mm厚度的要求[77].Furneaux等从铝基底上分离得到孔径200nm的微孔氧化铝膜,以此膜作为分离膜成功地分离出了流感病毒[78].此外,将氧化铝多孔膜作为芯膜[48,79],通过电沉积、浸渍等方法,可复制出结构相同而材质不同的多孔膜,这些不同材质的多孔膜,在很多领域内有着广阔的应用前景.

模板,制备出多种无机半导体材料的纳米管和丝的阵列[54],如TiO2、ZnO和WO3等.Cheng等在AAO模板上通过气相反应制备出GaN纳米线与纳米颗粒[55,56].此外,还制备出了SiO2[57]、Ga2O3、ZnO[58,59]、TiO2[60]、CdS[61-63]

6 展 望

以多孔阳极氧化铝为模板,是合成纳米材料的

一种非常简便有效的方法,可用来合成各种材料如金属、聚合物、碳和半导体以及多种材料组成的复合纳米管或纳米线体系.应用范围覆盖广泛:

从化学分析到超痕量分子检测;从基本的光学研究到生物传感器、电子装置、磁性材料的研制等领域.但同时

、In2O3[64]等半导体纳

[66]

米材料、碳纤维

[65]

以及B4C、LiCoO2

[67]

LiMn2O4[68]等复合材料.徐士民等以多孔氧化铝为

模板,用交流电分别通过含有相应的CdCl2、ZnCl2、

单质S、Se等的二甲亚砜(DMSO)溶液,沉积CdS、CdSe以及CdxZn1-xS半导体纳米线阵列并研究其紫

第4期

赵彦春等:

多孔阳极氧化铝膜的制备及其在一维纳米材料合成中的应用373

这一领域的研究从合成、组装到性能测量、器件制备都还存在许多尚未解决的问题.合成中如何实现作为纳米器件构筑基元的一维纳米材料的结构与组成,形貌与尺寸的有效控制,依然是限制模板合成纳米材料研究与应用发展的关键.开展这一方面的研究具有重要的理论意义和应用价值,亦需要多学科的联合与协作.

参 考 文 献

[1]DiggleJW,DownieTC,GouldingCW.Chem.Rev.,1969,

69:

365

[2]SetohS,MiyataA.Sci.Pap.Inst.Phys.Chem.Res.,1932,

19:

237

[3]LiuZhongyang(刘仲阳),ChenJianxuan(陈剑?

),Zhang

Dazhong(张大忠),SunGuanqing(孙官清).J.SichuanUniv.(Sci&Tech)(四川大学学报(自然科学版)),

[17]PatermarakisG,MoussoutzanisK,ChandrinosJ.Journalof

SolidStateElectrochemistry,2001,6:

39

[18]OsullivanJP,WoodGC.Proc.Roy.Soc.Ser.A,1970,

315:

511

[19]XuTao(徐洮),QiShangkui(齐尚奎),ZhaoJiazheng(赵

家政),ChenJianmin(陈建敏).ActaPhys.Chim.Sin.

(物理化学学报),1996,12:

276

[20]WuJunhui(吴俊辉),ZouJianping(邹建平),ZhuQing

(朱青),BaoXimao(鲍希茂).Chin.J.Chem.Phy.(化

学物理学报),1999,12:

1

[21]ParkhutikVP,ShershulshyVI.J.Phys.D:

Appl.Phys.,

1992,25:

1258

[22]JessenskyO,MullerF,GoseleU.Appl.Phys.Lett.,1998,

72:

1173

[23]HoyerP,BabaN,MasudaH.Appl.Phys.Lett.,1995,66:

2700

[24]Xu((黄新民),QianLihua

.(化学物理学报),]FJrCA,HornyakGL,StockertJA,MartinCR.Adv.

Mater.,1993,5:

135

2001,38:

374

[4]KellerF,HunterMS,RobinsonDL.J.Electrochem.Soc.1953,100:

411

[5]KobayashiK,ShimizuK.J.,,:

908

[6]KotzR,SchnyderB,C.ThinSolidFilms,1993,

233:

63

[7]DebuyckF,MoorsM,VanpeteghemAP.MaterialsChemistry

andPhysics,1993,36:

146

[26]FossJrCA,HornyakGL,StockertJA,MartinCR.J.

Phys.Chem.,1992,96:

7497

[27]HornyakGL,MartinCR.J.Phys.Chem.,1997,101:

1548

[28]MenonVP,MartinCR.Anal.Chem.,1995,67:

1920[29]ParthasarathyRV,PhaniKLN,MartinCR.Adv.Mater.,

1995,7:

896

[30]XuDongsheng,GuoYuguo,YuDapeng,GuoGuolin,Tang

Youqi,YuDP.JournalofMaterialsResearch,2002,17:

1711

[31]LeeJinSeung,GuGeunHoi,KimHoseong,JeongKwang

Seok,BaeJiwon,SuhJungSang.Chem.Mater.,2001,13:

2387

[32]ParthasarathyRV,MartinCR.Chem.Mater.,1994,6:

1627

[33]MartinCR,VanDykeLS,CaiZ,LiangW.J.Am.Chem.

Soc.,1990,112:

8976

[8]WangWei(王为),GuoHetong(郭鹤桐),ZhaoBingying

(赵秉英),GaoJunli(高俊丽).J.TianjinUniv(Sci&Tech).(天津大学学报(自然科学版)),2000,33:

341

[9]YuanShujuan(袁淑娟),ZhaoLili(赵莉丽),PanZhifen

(潘志峰),LiQingshan(李清山).J.QufuNormalUniv.(Sci.&Tech.)(曲阜师范大学学报(自然科学版)),

2001,27:

37

[10]PatermarakisG,MoussoutzanisK,ChandrinosJ.Journalof

SolidStateElectrochemistry,2001,6:

39

[11]WuHuiquan,HebertKR.ElectrochimicaActa,2002,47:

1373

[12]DimogerontakisTh,Tsangaraki2KaplanoglouI.ThinSolid

Films,2002,402:

121

[34]LeiJ,CaiZ,MartinCR.Synth.Met.,1992,46:

53[35]BrumlikCJ,MenonVP,MartinCR.J.Mater.Res.,

1994,9:

1174

[36]ZhenWang,MiaoChen,HulinLi,Mater.Sci.Eng.A,

2002,328:

33

[37]GregoryRV,KimbrellWKuhnC.Synth.Met.,1989,28:

C823

[38]ParthasarathyRV,MartinCR.Nature,1994,369:

298[39]PossinGerogeEJ.Rev.Sci.Instrum.,1970,41:

772

[13]SuiY,SanigerJM.Mater.Lett.,2001,48:

127[14]WuHuiquan,ZhangXiao,HebertKurtR.J.Electrochem.

Soc.,2000,147:

2126

[15]LiuY,AlwittRS,ShimizuK.J.Electrochem.Soc.,2000,

147:

1382

[16]WuMT,LeuIC,HonMH.JournalofVacuumScience&

Technology,B:

MicroelectronicsandNanometerStructures,

2002,20:

776

374

化 学 物 理

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1