风电机组的防雷和防雷标准.docx

上传人:b****4 文档编号:11600065 上传时间:2023-03-20 格式:DOCX 页数:13 大小:138.62KB
下载 相关 举报
风电机组的防雷和防雷标准.docx_第1页
第1页 / 共13页
风电机组的防雷和防雷标准.docx_第2页
第2页 / 共13页
风电机组的防雷和防雷标准.docx_第3页
第3页 / 共13页
风电机组的防雷和防雷标准.docx_第4页
第4页 / 共13页
风电机组的防雷和防雷标准.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

风电机组的防雷和防雷标准.docx

《风电机组的防雷和防雷标准.docx》由会员分享,可在线阅读,更多相关《风电机组的防雷和防雷标准.docx(13页珍藏版)》请在冰豆网上搜索。

风电机组的防雷和防雷标准.docx

风电机组的防雷和防雷标准

风电机组的防雷和防雷标准

1引言

在我国风电发展初期,风电场大部分集中在年平均雷电日较少的新疆和内蒙古等地区,采用的主

要是450kW级以下的风电机组,雷害问题并不突出。

随着我国风电场建设速度不断加快、规模不断扩大以及风电机组的日益大型化,风电机组的雷害也日益显露。

现阶段,我国风电场开发不断向高海拔和沿海地区拓展,大功率风电机组的塔架最高已经超过120m,是风电场中最高大的构筑物。

在风

电机组的20年寿命期内,难免会遭遇到雷电的直击。

中国可再生能源学会风能专业委员会于2009

年9月在肇庆召开的叶片专业组年会,将叶片的防雷作为一个重要问题进行了研讨,说明风电机组防

雷已经引起专家的高度重视。

国际电工委员会(IEC)第88工作委员会(IECTC88)在编制风电机组系列标准IEC61400时,编制了一个技术报告(TR),作为IEC61400系列标准的第24部分于2002年6月出版,其初衷是想为这个相对年经的工业提供防雷知识。

该标准在几年的实践中证明,技术报告对防止和减少风电机组的雷害是有效的。

但是随着大型风电机组的发展和风电场向外海的拓展,雷害问题比2002年以

前更加复杂和突出。

因此,有必要制订一个风电机组防雷标准以供风电行业人员使用。

将IEC6140

0由技术报告(TR)升级为技术标准(TS)便提上了议事日程。

2风电机组的雷害

IEC61400-242002中,阐明了不同于其他建筑物的风电机组雷害问题,机组的结构特点、工

作原理以及所处场地等因素使其容易遭受雷害。

人们已经了解建筑物高度对雷击过程的影响。

高度超

过60m的建筑物会发生侧击,即部分雷电击中建筑物侧面而不是建筑物顶部。

风电机组塔架是高于60m的构筑物,所以侧击概率比建筑物大很多,并造成严重损害。

另外,从雷电机理可知,与上行

雷相关的起始连续电流转移的电荷量可以高达300C,也就是说,上行雷造成的对建筑物的损坏比例

随着高度增加而增加,当塔架高度超过100m时上行雷击的概率升高。

而风电机组一般设置在风力

强大的高于周围地区的制高点,并且远离其他高大物体,例如海岸、丘陵、山脊,这些地区正是雷电多发区,因此更能吸引雷电。

据德国、丹麦、瑞典等欧洲国家统计,雷电引起故障的频率是,每年每百台机组达3.9次到8

次。

直接雷击可以使叶片遭到损毁;雷电电磁脉冲(雷电感应过电压)等间接雷击可以使发电机、变_压器、变流器等电气设备和控制、通信、SCADA等电子系统遭受灾难性损坏;也有极个别的轮毂、

齿轮箱、液压系统、偏航系统和传动系统及机械制动器等雷击损坏的报道。

其中控制系统、传感器、通信、SCADA等弱电部件遭受雷害的概率较大,这是因为这些弱电器件的耐过电压和过电流的能力较弱,雷电电磁脉冲会使其损坏,但由于维修方便,直接和间接经济损失与由于叶片损坏所造成的损失相比不算很大。

叶片在遭到直击雷时损坏都比较严重,且遭到损毁的叶片不易修复。

离岸或在边远地区设置的机

组,物资运输极其困难,维修人员的开销很大,同时风电场停止运行的收入损失也是巨大的。

因此,

叶片的雷害最引人关注。

另外一个问题是现代大型风电机组的叶片用不能传导雷电流的复合材料制成,例如玻璃纤维增强

塑料或木材层压板。

在叶片未加防护时,一旦被雷电击中就会造成损坏。

因此,对这类叶片作防雷要

求是必要的。

用玻璃纤维增强塑料制成的机舱外壳,也应当采取防直接雷击措施。

1引言

在我国风电发展初期,风电场大部分集中在年平均雷电日较少的新疆和内蒙古等地区,采用的主要是

450kW级以下的风电机组,雷害问题并不突出。

随着我国风电场建设速度不断加快、规模不断扩大以及风电机组的日益大型化,风电机组的雷害也日益显露。

现阶段,我国风电场开发不断向高海拔和沿海地区拓展,大功率风电机组的塔架最高已经超过120m,是风电场中最高大的构筑物。

在风电机组的20年寿命期内,难免会遭遇到雷电的直击。

中国可再生能源学会风能专业委员会于2009年9月在肇庆召开的叶片专业组年会,将叶片的防雷作为一个重要问题进行了研讨,说明风电机组防雷已经引起专家的高度重视。

国际电工委员会(IEC)第88工作委员会(IECTC88)在编制风电机组系列标准IEC61400时,编制了一个技术报告(TR),作为IEC61400系列标准的第24部分于2002年6月出版,其初衷是想为这个相对年经的工业提供防雷知识。

该标准在几年的实践中证明,技术报告对防止和减少风电机组的雷害是有效的。

但是随着大型风电机组的发展和风电场向外海的拓展,雷害问题比2002年以前更加复杂和突出。

因此,有必要制订一个风电机组防雷标准以供风电行业人员使用。

将IEC61400由技术报告(TR)升级为技术标准(TS)便提上了议事日程。

2风电机组的雷害

IEC61400-242002中,阐明了不同于其他建筑物的风电机组雷害问题,机组的结构特点、工作原理以及所处场地等因素使其容易遭受雷害。

人们已经了解建筑物高度对雷击过程的影响。

高度超过60

m的建筑物会发生侧击,即部分雷电击中建筑物侧面而不是建筑物顶部。

风电机组塔架是高于60m的构筑物,所以侧击概率比建筑物大很多,并造成严重损害。

另外,从雷电机理可知,与上行雷相关的起始连续电流转移的电荷量可以高达300C,也就是说,上行雷造成的对建筑物的损坏比例随着高度增加而增加,当塔架高度超过100m时上行雷击的概率升高。

而风电机组一般设置在风力强大的高于周围地区的制高点,并且远离其他高大物体,例如海岸、丘陵、山脊,这些地区正是雷电多发区,因此更能吸引雷电。

据德国、丹麦、瑞典等欧洲国家统计,雷电引起故障的频率是,每年每百台机组达3.9次到8次。

直接雷击可以使叶片遭到损毁;雷电电磁脉冲(雷电感应过电压)等间接雷击可以使发电机、变压器、变流器等电气设备和控制、通信、SCADA等电子系统遭受灾难性损坏;也有极个别的轮毂、齿轮箱、液压系统、偏航系统和传动系统及机械制动器等雷击损坏的报道。

其中控制系统、传感器、通信、SCADA等弱电部件遭受雷害的概率较大,这是因为这些弱电器件的耐过电压和过电流的能力较弱,雷电电磁脉冲会使其损坏,但由于维修方便,直接和间接经济损失与由于叶片损坏所造成的损失相比不算很大

叶片在遭到直击雷时损坏都比较严重,且遭到损毁的叶片不易修复。

离岸或在边远地区设置的机组,

物资运输极其困难,维修人员的开销很大,同时风电场停止运行的收入损失也是巨大的。

因此,叶片的雷

害最引人关注。

另外一个问题是现代大型风电机组的叶片用不能传导雷电流的复合材料制成,例如玻璃纤维增强塑料

或木材层压板。

在叶片未加防护时,一旦被雷电击中就会造成损坏。

因此,对这类叶片作防雷要求是必要的。

用玻璃纤维增强塑料制成的机舱外壳,也应当采取防直接雷击措施。

风电机组是不断旋转运动的机械,于是又出现了一个特殊问题一一雷击的风险出现在旋转叶片上多处,并

且不止一个叶片遭到雷击。

原因是一次雷击包含有几个不连续的脉冲,即雷击的连续性,一次雷击的持续时间达到1s,这一时间足以使多个叶片暴露在雷电中(例如一个3叶片的风电机组的旋转速度为20r/min,那么每个叶片的运动速度就为120°/s)。

雷击叶片时,雷电流通过整个机组构筑物入地,包括桨距轴承、轮毂和主轴轴承、齿轮、发动机轴承、底座、偏航轴承和塔架。

雷电流流经齿轮和轴承可使其损坏,特别是在滚轮和滚道之间以及齿轮与轮齿间有润滑层时,损坏更严重。

风电机组的防雷问题,可以理解为有成千上万高度超过100m的高大建筑物,位于荒郊野地,很容

易遭受雷击。

这些构筑物内有复杂的电气和控制设备,外部用复合材料制成,还有长达60m的旋转的叶

片。

过去各国的经验已经证明,位于雷电频发地区的风电机组,在它服务寿命期内,都会遭到数次雷击。

因此,风电机组的防雷必须引起人们的注意。

3IEC61400技术标准概要

3.1IEC61400技术标准编制背景2006年,国际电工委员会(IEC)第81委员会(TC81)完成了系列标准IEC62305:

2006ProtectionagainstLightning,我国于2008年将其等同采用为国家标准,即GB/T21714—2008《雷电防护》。

这时,IECTC88第24项目组提出以IEC62305:

2006

为主要参考文件,将IEC61400:

2002由技术报告升级为技术标准。

第24项目组希望有更多的防雷

专家与风电机组的制造商合作,将防雷专家咨询变为防雷专家参与完成防雷工作。

虽然,风电机组的防雷

还有一些未解决的难题(如叶片的有效防雷),但过去几十年的研究和经验证明,只要采取的措施得当,风电机组是可以防范雷电损坏的。

新的IEC61400-24注重将现存的IEC62305系列防雷标准、IEC61000系列EMC标准、电机

系统标准、电气系统标准兼顾,并考虑将叶片和最新的航空工业的研究成果和发布的标准SAE/EUROCA

E等应用到风电机组上,以达到保护电器和控制系统以及整个机组结构的目的。

新的标准强调用试验证明防护系统设计的有效性,提出对叶片进行高电压大电流试验。

高电压大电流试验最初用来进行飞机结构合格检验,现在许多叶片制造厂家已经用来检验叶片和风电机组雷电导流系统中的分离部件的导流和耐流能力。

表1构第物防护水平与雷电裁数

.--

防护球平

电流峰d(kA)

电配平均上升逸頼kA/p"

转移总电荷(匸)

200

10000

200

300

150

5600

150

225

B/IV

100

2&0-0

WO

tso

3.2新IEC61400-24处理的主要题目

3.2.1风电机组雷电环境定义

新IEC61400-24认为,IEC62305-1定义的雷电流参数基本上也可用于风电机组的雷电防护系统设计以及防雷部件的选择和测试。

在IEC62305-1中,根据构筑物预期的雷击电流大小,将雷电防护水平分为表1所示的几类。

我国各地雷电环境不同,预期的雷电流大小也不一样,应当根据我国不同地域使用和规定防护水平。

要考虑我国大多数地区雷电直接击中叶片时,电流达到200kA的概率极小。

风电机组中的易损器件是接闪器(安装在叶尖)、接闪器系统、滑动接触器、火花间隙和电涌保护器

(SPD)等,雷击转移的总电荷是确定材料易损(熔化)以及维修需求的关键参数。

增加易损器件的耐

受雷电能力,重新设计这些部件的可靠性,使风电机组在其寿命期内可以抵御磨损和破裂。

图1设置在山峰上的风电机组高度H的确定示意图322风电机组雷害风险评估

IEC61400-24:

2002按照IEC/TR261662Ed.1.0来评估风电机组的雷害。

新标准遵循IEC6

2305-2RiskManagement(风险管理)的雷电环境和风险评估程序评估风电机组的雷害,使其符合风电机组的情况。

新标准建议计算等效雷击截收面积时,风电机组的高度应为轮毂高度与风轮半径之和的高度,同时还要考虑地形的变化(图1)。

图2供电和通信电缆连接的将风电机组和其它建筑物连接时的雷电截收面积

在计算等效雷击截收面积时,考虑高度为Ha的风电机组等效雷击截收面积以及与机组连接的高度为Hb

的建筑物等效雷击截收面积之和,还有与之相连的地下电缆长度Lc相关的面积(图2)。

 

 

图3雷电防护区LPZ的应用(图中,1为LPZ1区,2为LPZ2区)

IPZOa

图4滚球法在风电机组中的应用(图中,滚球覆盖以外的地区为LPZ0A区)

323风电机组各部件的防雷

新标准建议风电机组采用IEC62305-3PhysicalDamagetoStructuresandLifeHazard(建筑物

的物理损坏和生命危险)规定的防雷程序,所有的分部件都按照I类防护水平设计防雷措施。

(1)叶片

风电机组的叶片几何结构复杂,长度超过60m,且由导电不良的增强型纤维复合材料制成,安装在高度超过100m的高塔上,垂直旋转(水平轴风电机组),并暴露在直击雷下,因此它的防雷比IEC6

2305-3所说的建筑物要复杂。

IEC62305系列标准根据建筑物遭到雷击的可能性和建筑物所处环境的雷电电磁脉冲强度将建筑物划分为若干防雷区,图3是风电机组的防护区示意图。

图4是滚球法用于风电机组的示意图。

叶片是风电机组中最暴露的部分,用滚球法可以看到,叶片的大部分位置处于LPZ0A区(图4),并经受全部电

磁场和机械(压力波)影响以及雷电流、电场、磁场和雷击的能量。

因此,叶片必须加以防护。

对叶片的保护是否足够,应当看其设计和安置叶片接闪器系统后能否有效的截获雷电,以及导流系统能否疏导与I类防雷水平一致的雷电流(除非风险分析证明表1所示的LPLU和LPL川已经足够)。

图5防雷型复合材料叶片虽然滚球法指出了雷电可能袭击叶片表面的大部分地方,但现场经验证明大部分雷电还是击中叶尖位置,

只有少数击中叶片的其他地方。

新标准推断IEC62305-3的接闪器保护范围的计算方法(滚球法、保护

角法等)并不完全适用于风电机组,所以还需大量的室内试验和现场调查才能真正作出叶片雷害机理的解

释。

新标准要求叶片制造商要在叶片设计室进行接闪系统和导流系统截获雷电和传导雷电流的能力的试

验。

笔者认为我国是一个多雷的国家,各地雷害频度和雷击强烈程度有很大的差异。

为了既能防雷,又能降低成本,需要按照不同的风电场雷电环境,设计叶片并进行不同电流和电压等级的试验。

新标准推荐了如图5的防雷型叶片,要求设计叶片时要考虑叶片在遭到雷击时,接闪器要准确地截获雷闪,电气传导部件例如尖轴、炭纤维复合材料和叶片中传感器导流线等必须有良好的传导雷电流的功能。

(2)机舱和其他构件

风电机组机舱和其他构件(如轮毂、塔架),应当有接闪能力,尽可能使用大的金属构件作接闪器。

还要将金属构件做等电位连接,将雷电流传导到接地系统。

机舱上气象仪表、航空灯等的避雷针、引下线以及搭接线的尺寸要满足IEC62305-3的要求。

总之,机舱和其它构件的防雷可以直接采用IEC62305系列标准所描述的方法。

按图4所示,风电机组应划分为若干防雷区LPZ,设计人员应计算雷电风险水平,并根据等电位搭接、电磁屏蔽和采用SP

D等设计防雷系统。

新标准对机舱和其他构件的防雷有详细的规定。

(3)机械驱动系统和偏航系统

机械驱动系统的防雷非常重要,因为风电机组的驱动系统有巨大的转动轴承、传动轴、齿轮、液压和电气执行系统,在雷电击中叶片时,它们都处于雷电流的径路上,巨大的雷电流可以使其受到机械损坏。

新标准建议机械驱动系统的所有部件都要经受住雷电流或运动部件间的雷电弧而不受损害,例如,轴承和执行机构用滑动接触器或火花间隙进行防护。

这些部件设计成可以将雷电流从被保护部件上转移或减少雷电流流经部件的数值,直到该雷电流小到部件可以承受的水平。

新标准要求这种防护系统的有效性可以用大电流试验检测,在试验室时要根据实验结果分析出有效的结论,并且应当计算出易耗部件如滑动接触器和间隙的寿命。

(4)电气系统、电子系统和系统安装

风电机组的电气系统、电子系统和系统安装应当经受住雷电电磁脉冲而不损坏。

据雷害统计显示,大多数雷害与风电机组的电气系统、电子系统有关。

新标准要求所提供的雷电电磁脉冲防护措施(LPMS)应能消除或避免这些系统的雷害。

这就要求利

用IEC62305-4的防护区的综合防护概念采取以下措施:

——接地

——搭接

——电磁屏蔽和合理布线(系统安装)

——能量协调一致的SPD

——隔离、电路设计、平衡电路、串联阻抗等

总之,新标准参考了有关低压电气系统和安装标准,包括机械设备高压和低压电气系统标准IEC60204-1、IEC60204-11、建筑物电气安装标准IEC60363、电磁兼容(EMC)安装以及接地和布线指南,尤为重要的是以建筑物内电气电子设备防雷标准IEC623050-4为依据。

标准要求采用的SPD和低压系统与IEC61643-1一致、通信和信号系统与IEC61643-21一致,选择和安装时,应当与IEC60364-4-44、IEC60364-5-53一致,电源防护系统应与IEC61643-12一致,控制和通信系统防护应与IEC61643-22一致。

新标准提供了如何保证SPD协调一致、SPD和被保护设备耐受能力协调一致的指南,并提供了检验设计和选择SPD是否合适的检验方法。

标准根据IEC60099-4,建议除非进行了高压绝缘配合研究并证明不必进行防护外,高压电力系统的防护采用不含空气间隙的金属氧化物避雷器,并根据IEC6009-5选择使用。

3.2.4风电机组的接地和搭接

接地系统的任务是消散雷电流和防止风电机组损坏,还用来保护人员和牲畜免受雷击。

若电气系统遭到损坏,在防护设备动作并安全切断故障电流前,使整个地电位上升到与同时出现的接触电压和跨步电压一个安全水平。

这些要求一般由电气规范给出,因此,风电场必须建立一个良好的接地系统。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 人力资源管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1