彩电开关电源的方案设计书.docx

上传人:b****5 文档编号:11569778 上传时间:2023-03-19 格式:DOCX 页数:18 大小:200.86KB
下载 相关 举报
彩电开关电源的方案设计书.docx_第1页
第1页 / 共18页
彩电开关电源的方案设计书.docx_第2页
第2页 / 共18页
彩电开关电源的方案设计书.docx_第3页
第3页 / 共18页
彩电开关电源的方案设计书.docx_第4页
第4页 / 共18页
彩电开关电源的方案设计书.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

彩电开关电源的方案设计书.docx

《彩电开关电源的方案设计书.docx》由会员分享,可在线阅读,更多相关《彩电开关电源的方案设计书.docx(18页珍藏版)》请在冰豆网上搜索。

彩电开关电源的方案设计书.docx

彩电开关电源的方案设计书

 

课题名称彩色电视机开关电源的设计

 

专业081332班

学生姓名谢森学号081332002

指导老师__支国庆技术职称___

 

2011年3月30日

毕业设计(论文)任务书

学生姓名:

谢森班级:

__081332班

 

1.毕业设计(论文)题目:

彩色电视机开关电源的设计

2.毕业设计(论文)使用的原始资料数据及设计技术要求:

 

3.毕业设计(论文)工作内容及完成时间

日期:

自2011年1月12日至2011年月日

指导老师评语:

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

指导老师:

支国庆系主任:

姚卫华

目录

第一章.绪论………………………………………………………4

第二章.开关电源的分类和基本工作原理……………………….5

2.1开关电源的分类………………………………………………5

2.2开关电源的基本工作原理…………………………………….6

第三章开关电源电路中主要元器件介绍………………………….7

3.1TOPSwitch-GX系列产品介绍………………………………7

3.1.1TOPSwitch系列单片开关电源的基本工作原理……………..8

3.2光电耦合器……………………………………….………..9

3.2.1光耦合器的性能特点…………………………………………10

第四章单片开关电源的设计……………………………………….10

4.1单片开关电源的主电路设计…………………………………….10

4.1.1主电路的工作原理……………………………………………11

4.1.2基本参数的确定…………………………………………...12

4.2输入整流滤波电路的设计……………………………….13

4.3TOPSwitch系列芯片的选取…………………………….13

4.3.1TOP248Y的管脚功能……………………………………14

4.4高频变压器的设计……………………………………….15

4.5输出整流滤波电路的设计………………………………16

4.6稳压反馈电路设计……………………………………….17

4.6.1光耦合器的选取…………………………………………….18

第5章结论…………………………………………………….19

致谢20

参考文献20

第一章、绪论

随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。

任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。

电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。

传统的晶体管串联调整稳压电源是连续控制的线性稳压电源。

这种传统稳压电源技术比较成熟,并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点。

但通用都需要体积大且笨重的工频变压器与体积和重量都很大的滤波器。

由于调整工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右。

另外,由于调整管上消耗较大的功率,所以需要采用大功率调整管并装有体积很大的散热器,很难满足现代电子设备发展的要求。

20世纪50年代,美国宇航局以小型化、重量轻为目标,为搭载火箭开发了开关电源。

在近半个多世纪的发展过程中,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛应用于电子整机与设备中。

20世纪80年代,计算机全面实现了开关电源化,率先完成计算机的电源换代。

20世纪90年代,开关电源在电子、电器设备、家电领域得到了广泛的应用,开关电源技术进入快速发展期。

并且自开关稳压电源问世后,在很多领域逐步取代了线性稳压电源和晶闸管相控电源。

早期出现的是串联型开关电源,其主电路拓扑与线性电源相仿,但功率晶体管工作于开关状态。

随着脉宽调制(PWM)技术的发展,PWM开关电源问世,它的特点是用20kHz的载波进行脉冲宽度调制,电源的效率可达65%~70%,而线性电源的效率只有30%~40%。

因此,用工作频率为20kHz的PWM开关电源替代线性电源,可大幅度节约能源,从而引起了人们的广泛关注,在电源技术发展史上被誉为20kHz革命。

随着超大规模集成(ultralarge-scale-integrated-ULSI)芯片尺寸的不断减小,电源的尺寸与微处理器相比要大得多;而航天、潜艇、军用开关电源以及用电池的便携式电子设备(如手提计算机、移动电话等)更需要小型化、轻量化的电源。

因此,对开关电源提出了小型轻量要求,包括磁性元件和电容的体积重量也要小。

此外,还要求开关电源效率要更高,性能更好,可靠性更高等。

这一切高新要求便促进

了开关电源的不断发展和进步。

第二章、开关电源的分类和基本工作原理

开关型稳压电源的种类很多,分类方法也有多种。

从推动功率管的方式来分可分为自激式和它激式,在自激式开关电源中由开关管和高频变压器构成正反馈环路来完成自激振荡;它激式开关稳压电源必须附加一个振荡器,振荡器产生的开关脉冲加在开关管上,控制开关管的导通和截至。

按开关管的个数及连接方式可分为单端式、推挽式、半桥式和全桥式等,单端式开关电源仅用一个开关管,推挽式和半桥式采用两个开关管,全桥式则采用四个开关管。

按开关管的连接方式,开关电源分为串联型与并联型开关电源,串联型开关电源的开关管是串联在输入电压与输出负载之间的,属于降压式稳压电路;而并联型开关电源的开关管是并联在开关电源之间的,属于升压式电路。

一般来说,功率很小的电源(1~100W)采用电路简单、成本低的反激型电路较好;当电源功率在100W以上且工作环境干扰很大、输入电压质量恶劣、输出短路频繁时,则应采用正激型电路;对于功率大于500W、工作条件较好的电源,则采用半桥或全桥电路较为合理;如果对成本要求比较严,可以采用半桥电路;如果功率很大,则应采用全桥电路;推挽电路通常用于输入电压很低、功率较大

的场合。

基于本设计中开关型稳压电源是采用全控型电力电子器件作为开关,利用控制开关的占空比来调整输出电压的新型电源,具有体积小、重量轻、噪音小,以及可靠性高等特点。

本设计旨在设计并制作出一种具有自动稳压功能的开关电源。

因此,本设计就选择了单端反激式开关电源。

2.2开关电源的基本工作原理

开关稳压电源按控制方式分为调宽式和调频式两种。

在目前开发和使用的开关电源电路中,绝大多数为脉宽调制型,即为PWM技术。

PWM技术,全称脉冲宽度调制技术,是通过对一系列脉冲的宽度进行调制来等效地获得所需波形(含形状和幅值)的。

PWM开关稳压电源的基本工作原理就是在输入电压、内部参数以及外接负载变化的情况下,控制电路通过被控信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源的输出电压被控制信号稳定。

调宽式开关稳压电源的控制原理如图1所示。

对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。

直流平均电压Uo可由公式(2.1)计算:

公式(2.1)

式中Um—矩形脉冲最大电压值;T—矩形脉冲周期;T1—矩形脉冲宽度。

当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。

这样,只要设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可达到稳定电压的目的。

图1脉宽调制式开关电源控制原理图

交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压通过功率转换电路进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。

第三章开关电源电路中主要元器件介绍

 随着PMW技术的不断发展和完善,开关电源得到了广泛的应用,以往开关电源的设计通常采用控制电路与功率管相分离的拓扑结构,但这种方案存在成本高、系统可靠性低等问题。

1977年国外首先研制成功脉宽调制控制器集成电路,美国摩托罗拉公司、硅通用公司等相继推出一批PWM芯片,典型产品有MC3520、SG3524、UC3842。

20世纪80年代,意-法半导体有限公司率先推出L4960系列单片式稳压器,之后又推出了L4970A系列。

90年代,美国功率集成公司POWERIntegrationInc在世界上收购西安研制成功三端隔离、脉宽调制型单片开关电源,该系列芯片将自启动电路、功率开关管、PMW控制电路及保护电路等集成在一起,从而提高了电源的效率,简化了开关电源的设计和新产品的开发,使开关电源发展到一个新的时代。

TOPSwitch系列单片开关电源经历了四代发展。

第一代单片开关电源包括TOP100、TOP200两大系列,TOP200与TOP100的重要区别有两点:

第一,用作单片开关电源时TOP200的交流输入电压为220/230V,或85~265V,这更适合我国的电网情况。

第二,TOP200将内部功率MOSFET的耐压值提升到700V,两者的引脚排列及内部电路相同。

TOPSwitch-П与第一代相比,不仅在性能上有进一步的改善,而且输出功率得到显著提高,现已成为国际上开发中、小功率开关电源及电源模块的优选集成电路。

TOPSwitch-FX系列是美国PI公司2000年最新研制的具有高性能的五端单片开关电源,该产品出具备TOPSwitch-П的全部优点之外,还对内部电路做了重大改进,增加了许多新颖,使用的功能。

而且输出功率比TOPSwitch-П系列提高了10%~15%.

第四代单片高压开关TOP-GX系列比第三代单片高压开关TOP-FX系列有了较大改进,它不仅使输出功率扩展到了250W,而且还增加了很多内置以及用户可配置的功能,从而使应用可开发为员可灵活地以最低的系统成本完成优化的电源设计。

3.1TOPSwitch-GX系列产品介绍

TOPSwitch-GX系列不仅继承了早期的TOPSwitch将高压功率MOSFET管、PWM控制、故障自动保护及其它控制电路集成在一个CMOS芯片上的优点,而且还增加了许多新功能,从而有效地降低了电源系统成本,提高了电源性能,改善了设计灵活性并扩展了电源输出功率。

其中的TOP250型芯片是世界上功率最高的单片电源IC,其最大输出功率可达290W,该芯片极大地扩展了开关电源芯片在大功率领域内的应用范围。

3.1.1TOPSwitch系列单片开关电源的基本工作原理

TOPSwitch系列单片开关电源的典型应用电路如图3.1所示。

由于单端反激式开关电源电路简单、所用元件少,输出与输入间有电气隔离,能方便的实现多路输出,开关管驱动简单,因此该电源采用单端反激式电路。

图3.1单片开关电源的典型应用电路

由图可见,高频变压器初级绕组NP的极性与次级绕组NS、反馈绕组NF的极性相反。

在TOPSwitch的MOSFET导通时,次级整流管VD2截止,此时电能以磁能量形式存储在初级绕组中;当TOPSwitch的MOSFET截止时,VD2导通,能量传输给次级。

高频变压器在电路中兼有能量存储、隔离输出和电压变换这三大功能。

图中,BR为整流桥,CIN为输入端滤波电容,COUT是输出端滤波电容。

交流电压UAC经过整流滤波后得到直流高压,经初级绕组加至TOPSwitch的漏极上。

在功率MOSFET关断瞬间,高频变压器漏感会产生尖峰电压,另外在初级绕组上还会产生感应电压(即反向电动势)UOR,两者叠加在直流输入电压桥上,加至内部功率开关管MOSFET的漏极上,因此必须在漏极增加钳位保护电路。

钳位电路由瞬态电压抑制器或稳压管VDZ1和阻塞二极管VD1组成,VD1宜采用超快恢复二极管。

当MOSFET导通时,变压器的初级极性上端为正,下端为负,从而导致VD1截止,因而钳位电路不起作用。

在MOSFET截止瞬间,初级极性则变为上负下正,此时尖峰电压就被VDZ1所吸掉。

该电源的稳压原理简述如下:

反馈绕组电压经过VD3,CF整流滤波后获得反馈电压UFA,经光耦合器中的光敏三极管给TOPSwitch的控制端提供偏压。

CT是控制端C的旁路电容。

输出电压Uo通过电阻分压器R1、R2分压并获得取样电压,与TL431中的2.5V基准电压进行比较后输出误差电压,然后通过光耦去改变TOP248Y的控制端电流,TOPSwitch的输出占空比D与IC成反比,故D变化,从而达到稳压目的。

当Uo减小,导致UF减小,Ic减小,进而D增大,最终使Uo增大。

由此可见,反馈电路正是通过调节TOPSwitch的占空比,使输出电压趋于稳定的。

3.2光电耦合器

随着开关电源技术和绿色电源的飞速发展,APFC技术成为当前研究的热点,电子式开关电源技术已经成熟,而且有相当多的控制方式。

目前人们正在进行数字式开关电源的研究与开发,已经有数字式带功率因数校正的开关电源产品上市。

对于数字式开关电源,隔离技术和抗干扰技术是至关重要的,随着电子元器件的迅速发展,光电耦合器的线性度越来越高,光电耦合器是目前在单片机和开关电源中用得最多隔离抗干扰器件。

光耦合器(opticalcoupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。

它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。

当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。

以光为媒介把输入端信号耦合到输出端的光电耦合器,由于它具有体积小、寿命长、无触点,抗干扰能力强,输出和输入之间绝缘,单向传输信号等优点,在数字电路上获得广泛的应用。

通常的光电耦合器由于它的非线性,因此在模拟电路中的应用只限于对较高频率的小信号的隔离传送。

普通光耦合器只能传输数字(开关)信号,不适合传输模拟信号。

近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。

3.2.1光耦合器的性能特点

光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。

它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。

由于光电耦合器的输入阻抗与一般干扰源的阻抗相比较小,因此分压在光电耦合器的输入端的干扰电压较小,它所能提供的电流并不大,不易使半导体二极管发光;由于光电耦合器的外壳是密封的,它不受外部光的影响;光电耦合器的隔离电阻很大(约1012Ω)、隔离电容很小(约几个pF)所以能阻止电路性耦合产生的电磁干扰。

线性方式工作的光电耦合器是在光电耦合器的输入端加控制电压,在输出端会成比例地产生一个用于进一步控制下一级的电路的电压。

线性光电耦合器由发光二极管和光敏三极管组成,当发光二极管接通而发光,光敏三级管导通,光电耦合器是电流驱动型,需要足够大的电流才能使发光二极管导通,如果输入信号太小,发光二极管不会导通,其输出信号将失真。

在开关电源,尤其是数字开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。

光耦合器的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。

此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。

电流传输比是光耦合器的重要参数,通常用直流电流传输比来表示。

当输出电压保持恒定时,它等于直流输出电流IC与直流输入电流IF的百分比。

其公式为:

(3.2.1)

采用一只光敏三极管的光耦合器,CTR的范围大多为20%~300%(如4N35),而PC817则为80%~160%,达林顿型光耦合器(如4N30)可达100%~5000%。

这表明欲获得同样的输出电流,后者只需较小的输入电流。

因此,CTR参数与晶体管的hFE有某种相似之处。

线性光耦合器与普通光耦合器典型的CTR-IF特性曲线如图3.2中虚线和实线所示。

图3.2CTR-IF特性曲线

由图可见,普通光耦合器的CTR-IF特性曲线呈非线性,在IF较小时的非线性失真尤为严重,因此它不适合传输模拟信号。

线性光耦合器的CTR-IF特性曲线具有良好的线性度,特别是在传输小信号时,其交流电流传输比(ΔCTR=ΔIC/ΔIF)很接近于直流电流传输比CTR值。

因此,它适合传输模拟电压或电流信号,能使输出与输入之间呈线性关系。

这是其重要特性。

使用光电耦合器主要是为了提供输入电路和输出电路间的隔离,在设计电路时,必须遵循下列原则:

所选用的光电耦合器件必须符合国内和国际的有关隔离击穿电压的标准;由英国埃索柯姆(Isocom)公司、美国摩托罗拉公司生产的4N××系列(如4N25、4N26、4N35)光耦合器,目前在国内应用地十分普遍。

鉴于此类光耦合器呈现开关特性,其线性度差,适宜传输数字信号(高、低电平),可以用于单片机的输出隔离;所选用的光耦器件必须具有较高的耦合系数

第四章单片开关电源的设计

4.1单片开关电源的主电路设计

随着PMW技术的不断发展和完善,开关电源得到了广泛的应用,以往开关电源的设计通常采用控制电路与功率管相分离的拓扑结构,但这种方案存在成本高、系统可靠性低等问题。

美国功率集成公司POWERIntegrationInc开发的TOPSwitch系列新型智能高频开关电源集成芯片解决了这些问题,该系列芯片将自启动电路、功率开关管、PMW控制电路及保护电路等集成在一起,从而提高了电源的效率,简化了开关电源的设计和新产品的开发,使开关电源发展到一个新的时代。

本次设计就是针对TOPSwitch的第四代产品TOP248Y型6端单片开关电源,并根据设计条件选择线性光耦合器PC817和可调式精密并联稳压器TL431来设计单端反激式开关电源。

4.1.1主电路的工作原理

电路主要包括输入整流滤波、TOP248Y脉宽调制、高频变压器、电压反馈整流滤波、输出整流滤波等几部分,其电路原理图如图4.1所示。

由VDZ1和VD1构成的漏极钳位电路,能吸收在MOSFET关断时由高频变压器初级漏感产生的尖峰电压,保护MOSFET不受损坏。

VDZ1采用钳位电压为200V的P6KE200型瞬态电压抑制器,VD1选用BYV26C型超快恢复二极管,其反向耐压为800V。

选择全频工作方式时,开关频率设定为132kHz。

输出滤波电路由C4、C5、C6、L1、C7构成。

TOP248Y具有频率抖动特性,这对降低电磁干扰很有帮助。

C6接在交流电源进线端,专门滤除电网线之间的差模干扰。

精密光耦反馈电路由光耦合器、TL431等组成。

输出电压UO通过电阻分压器R5~R7获得取样电压,与TL431中的2.50V基准电压进行比较后产生误差电压,再经过光耦去改变TOP248Y的控制端电流IC,使占空比发生变化,进而调节UO保持不变。

反馈绕组的输出电压经VD2、C4整流滤波后,给光耦中的接收管提供偏压。

C3还与R2一起构成尖峰电压滤波器,使偏置电压在负载较重时能保持恒定。

R4、C9、C10和C2均为控制环路的补偿元件。

图4.1主电路工作原理图

4.1.2基本参数的确定

1.根据u,确定初级感应电压UOR和钳位二极管反向击穿电压UB值

表4.1确定UOR、UB值

u/V

初级感应电压UOR/V

钳位二极管反向击穿电压UB/V

固定输入100/115

60

90

通用输入85~265

135

200

固定输入230±35

135

200

由表4.1可得初级感应电压UOR=135V.

钳位二极管反向击穿电压UB=200V.

2.根据UI(min)和UBR来确定最大占空比Dmax

(4.1.1)

设定MOSFET的漏-源导通电压UDS(ON)=10V,将UOR=135V和UI(min)=90V带入上式得出Dmax=63%。

3.确定初级纹波电流IR与初级峰值电流IP的比值KRP

定义比例系数

当u确定后,KRP有一取值范围,如下表4.2.

表4.2根据u来确定KRP

u/V

KRP

最小值(连续模式)

最大值(不连续模式)

固定输入100/115

0.4

1.0

通用输入85~265

0.4

1.0

固定输入230±35

0.6

1.0

在连续模式下,取KRP=0.4.

4.确定初级波形参数

输入电流平均值

(4.1.2)

初级峰值电流

(4.1.3)

4.2输入整流滤波电路的设计

在输入端先通过EMI滤波器(由L2、C11构成)来防止电磁干扰,它能有效地抑制电网噪声,提高电源的抗干扰能力及系统和可靠性。

取L2=820μH、C11=0.1μF。

初步滤波之后,加接单相整流桥,选取整流桥参数如下:

整流桥的反向击穿电压应满足

(4.2.1)

代入umax=265V得UBR≥468.4V,所以应选耐压600V的成品整流桥.设输入有效电流为IRMS整流桥额定的有效电流为IBR,应当使IBR≥2IRMS,计算IRMS的公式如下:

(4.2.2)

式中cosφ为电源的功率因数,一般为0.5~0.7,可选cosφ=0.5, 代入得IBR≥7.1A,取IBR=8A.

4.3TOPSwitch系列芯片的选取

TOPSwitch-GX系列开关器件提高了输出功率。

实践证明,用TOPSwitch-GX系列开关器件设计开关稳压电源,其电路结构更加简单,抗干扰性能更好,可靠性更高,因此,本次设计就针对TOPSwitch-GX系列来选取合适的芯片。

所选芯片的极限电流的最小值ILIMIT(min)应满足下条件:

0.9ILIMIT(min)≥IP(4.3.1)

代入IP值得出ILIMIT(min)≥3.67A

表4.3内部自保护极限电流值

产品型号

极限电流ILIMIT/A

最小值

典型值

最大值

TOP244Y

1.256

1.35

1.445

TOP245Y

1.674

1.80

1.926

TOP246Y

2.511

2.70

2.889

TOP247Y

3.348

3.60

3.852

TOP248Y

4.185

4.50

4.815

TOP249Y

5.022

5.40

5.778

TOP250Y

5.859

6.30

6.741

由上表,应选取TOP248Y芯片。

4.3.1TOP248Y的管脚功能

TOP248Y外形如图4.12示。

它有六个管脚,依次为控制端C、线路检测端L、极限电源设定端X、源极S、开关频率选择端F和漏极D。

各管脚的具体功能如下:

 图4.2TOP248Y外形及管脚图

控制端C:

误差放大电路和反馈电流的输入端。

在正常工作时,利用控制电流Ic的大小可调节占空比,并可由内部并联调整器提供内部偏流。

系统关闭时,利用该端可激发输入电流,同时该端也是旁路、自动重启和补偿电容的连接点。

线路检

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1