AHP分析法的详细计算过程.docx
《AHP分析法的详细计算过程.docx》由会员分享,可在线阅读,更多相关《AHP分析法的详细计算过程.docx(13页珍藏版)》请在冰豆网上搜索。
AHP分析法的详细计算过程
供给商的选择
一、层次分析法根本原理
供给商的选择多采用层次分析法。
层次分析法〔Analytia1HierarchyProcess,简称AHP〕是美国匹兹堡大学教授A.L.Saaty于20世纪70年代提出的一种系统分析方法。
AHP是一种能将定性分析与定量分析相结合的系统分析方法。
AHP是分析多目标、多准那么的复杂大系统的有力工具。
它具有思路清晰、方法简便、适用面广、系统性强等特点,最适宜于解决那些难以完全用定量方法进行分析的决策问题,便于普及推广,可成为人们工作和生活中思考问题、解决问题的一种方法。
将AHP引入决策,是决策科学化的一大进步。
应用AHP解决问题的思路是:
首先,把要解决的问题分层系列化,即根据问题的性质和要到达的目标,将问题分解为不同的组成因素,按照因素之间的相互影响和隶属关系将其分层聚类组合,形成一个递阶的、有序的层次结构模型。
然后,对模型中每一层次因素的相对重要性,依据人们对客观现实的判断给予定量表示,再用数学方法确定每一层次全部因素相对重要性次序的权值。
最后,通过综合计算各层因素相对重要性的权值,得到最低层〔方案层〕相对于最高层〔总目标〕的相对重要性次序的组合权值,以此作为评价和选择决策方案的依据。
现举例来说明层次分析法的根本原理。
假定有n个物体,它们的重量分别为W1、W2、……,Wn,并且假定它们的重量和为1个单位,即
。
两两比拟它们之间的重量很容易得出判断矩阵:
显然aij=1/aji,aii=1
aij=aik/ajk;i,j,k=1,2,…,n
用重量向量W=[W1,W2,……,Wn]右乘A矩阵,其结果为
从上式不难看出,以n个物体重量为分量的向量W是判断矩阵的特征向量。
根据矩阵理论,n为上述矩阵A的唯一非零的,同时也是最大的特征值,而W是该特征值所对应的特征向量。
上面的例子显示,如果有一组物体需要估算它们的相对重量,而又没有称重仪器,那么可以通过两两比拟这组物体相对重量的方法,得出每对物体的重量比值,从而形成判断矩阵,通过求解判断矩阵的最大特征值和所对应的特征向量,就可以计算出这组物体的相对重量。
同样,对于复杂的社会的、经济的以及管理科学等领域的问题,通过建立层次分析模型,构造两两因素判断矩阵,就可应用求解最大特征值和特征向量的方法,来确定出相应的各种方案、措施、政策等相对于总目标的重要性排序权值,以供决策使用。
应用层次分析法保持判断思维的一致性是非常重要的,所谓判断一致性,即判断矩阵A有如下关系:
aij=aik/ajk;i,j,k=1,2,…,n
判断矩阵在满足上述完全一致性的条件下,具有唯一非零的、同时也是最大的特征值λmax=n(n为判断矩阵的阶数)。
但是,在一般决策问题中,决策者不可能给出精确的Wi/Wj度量,只能对它们进行判断估计。
这样,实际给出的aij判断与理想的Wi/Wj有偏差,不能保证判断矩阵具有完全的一致性。
因此,为了保证应用层次分析法得到的结论根本合理,还需要对构造的判断矩阵进行一致性检验。
根据矩阵理论,如果λ1,λ2,…λn,满足Ax=λx,即λ1,λ2,…λn是矩阵A的特征值,并且对所有aii=1,有
,当矩阵A具有完全一致性时,λmax=n,其余特征值都为零。
而当矩阵A不具有完全一致性时,有λ1=λmax>n,其余特征值l2,l3,…λn有如下关系:
或
当矩阵A具有满意一致性时,λmax稍大于n,也就是λmax越接近n,一致性越好,
反之,一致性越差。
因此,引入判断矩阵最大特征值以外其余特征值和平均值作为判断矩阵一致性的指标,即用
检测决策者判断思维的一致性。
为了度量不同判断矩阵是否具有满意一致性,根据经验,还需引入判断矩阵的平均随机
一致性指标RI值。
对于1-9阶判断矩阵,RI值分别为
表5-2平均随机一致性指标
1
2
3
4
5
6
7
8
9
当阶数大于2时,判断矩阵的一致性指标CI与同阶平均随机数一致性指标RI之比称为随机一致性比率,记为CR。
当
时,即认为判断矩阵具有满意一致性,否那么就需要调整判断矩阵,使之具有满意一致性。
综上所述,使用层次分析法的根本步骤是:
1.建立评价结构模型
深入分析所面临的问题,将问题中所包含的因素划分为不同的层次,用框图形式说明层次的递阶结构与因素的附属关系。
2.构造判断矩阵
判断矩阵的值反映了专家对各因素相对重要性〔或优劣、强度等〕的认识,一般采用1-9及其倒数的标度方法。
3.层次单排序及其一致性检验
通过等式Ax=λmaxx,求解判断矩阵的最大特征值λmax所对应的解W,经规一化处理后
即为同一层次相应因素相对重要性的排序权值,这一过程称为层次单排序。
对每一个判断矩阵需进行一致性检验。
当随机一致性比率满足
时,认为层次单排序的结果有满意的一致性,否那么需要调整判断矩阵的元素取值。
4.层次总排序及其一致性检验
计算同一层次所有因素对于最高层〔总目标〕相对性的排序权值,称为层次总排序。
这一过程是最高层次到最低层次逐层进行的。
假设上一层次A包含n个因素,A1,A2,…,其层次总排序权值分别为a1,a2,…an,下一层次B包含m个元素B1,B2,…Bm,它们对于因素Aj的层次单排序权值分别为b1j,b2j,…bmj〔当Bk与Aj无联系时,bkj=0〕,此时B层次总排序权值由下表给出。
表5-3层次总排序计算表
A1
A2
…
An
B层次总排序权值
a1
a2
…
an
B1
b11
b12
…
b1n
B2
b21
b22
…
b2n
┇
┇
┇
┇
┇
┇
Bm
bm1
bm2
…
bmn
层次一致性检验也是从高到低逐层进行的。
如果B层次某些因素对于Aj单排序的一致性指标为CIj,相应的平均随机一致性指标为CRj,那么当B层次总排序随机一致性比率:
时,
认为层次总排序结果具有满意的一致性,否那么需要重新调整判断矩阵的元素取值。
二、供给商选择步骤
第一步设定评价指标体系
供给商评价问题涉及因素众多,评价指标多种多样,既有定性的,又有定量的,而且指标权重各不相同,因此有必要建立一套通用的、可扩展的供给商评价指标体系,该指标体系应遵循一定的原那么:
1.完备、简洁性原那么
供给商的指标体系应能全面、准确地反映供给商各个方面的情况,并且能将各个评价指标与系统的总体目标有机地联系起来,组成一个层次清楚的整体。
在供给商信息尽量充分的前提下,所选指标数目应尽可能少,各指标之间不应有强相关性,不应出现过多的信息包容和涵盖现象。
2.客观、可比性原那么
指标筛选过程应尽可能不受主观因素的影响,尽可能选用可量化的指标,确保评价结果的真实性和可比性。
3.可重构、可扩充性原那么
评价指标不仅要有数量上的变化,而且还要有指标内容上的变化,应该可以根据不同的要求对指标体系进行修改、增加和删除。
例5-1对某一物料,假设有甲、乙、丙、丁四家供给商,确立的指标体系为:
价格水平、质量水平、交货周期、售后效劳。
建立的供给商评价指标体系如下列图所示:
评价尺度如下表所示:
表5-4判断矩阵标度含义表
评价尺度
评价描述
评分
极端重要
9
很重要
7
明显重要
5
稍微重要
3
重要性相同
1
中间值2、4、6、8、介于各评分值中间
第二步构造判断矩阵
在指标层由专家对四个指标进行两两比拟打分,得到判断矩阵。
注意要保证
aii=1,aij=1/aji,即评价指标评分与自身相比,重要性相同,与矩阵主对角线相对称的数值互为倒数。
表5-5评价指标两两比拟判断矩阵
初始矩阵:
评价指标——两两比拟
价格水平
质量水平
交货周期
售后效劳
价格水平
1
1/2
3
5
质量水平
2
1
3
2
交货周期
1/3
1/3
1
1/4
售后效劳
1/5
1/2
4
1
在价格、质量、交货周期和售后效劳水平上,对甲乙丙丁四家企业两两比拟得判断矩阵如表5-6~表5-9所示。
表5-6价格水平供给商两两比拟判断矩阵
初始矩阵:
评价指标——两两比拟
价格水平
质量水平
交货周期
售后效劳
价格水平
1
1/2
3
5
质量水平
2
1
3
2
交货周期
1/3
1/3
1
1/4
售后效劳
1/5
1/2
4
1
表5-7质量水平供给商两两比拟判断矩阵
价格水平
甲
乙
丙
丁
甲
1
1
1/2
6
乙
1
1
1/2
6
丙
2
2
1
7
丁
1/6
1/6
1/7
1
表5-8交货周期供给商两两比拟判断矩阵
质量水平
甲
乙
丙
丁
甲
1
3
5
5
乙
1/3
1
2
2
丙
1/5
1/2
1
1
丁
1/5
1/2
1
1
表5-9售后效劳供给商两两比拟判断矩阵
售后效劳
甲
乙
丙
丁
甲
1
3
5
5
乙
1/3
1
3
3
丙
1/5
1/3
1
1
丁
1/5
1/3
1
1
第三步计算最大特征值及其对应的特征向量
首先计算第一个判断矩阵的最大特征值及其对应的特征向量。
根据矩阵理论,利用计算机得到理想精度的最大特征值及其对应的特征向量。
但是,由于判断矩阵本身有相当的误差范围,所以计算最大特征值及其对应的特征向量并不需要追求较高的精确度。
这里,介绍一种近似算法──方根法,计算最大特征值及其对应的特征向量,可以非常方便地完成计算。
方根法计算最大特征值及其对应的特征向量步骤
〔1〕计算判断矩阵每一行元素的乘积Mi,
〔2〕计算Mi的n次方根
〔3〕对向量
进行正规化处理,即
。
那么
即为所求的特征向量。
〔4〕计算判断矩阵的最大特征值λmax
式中(AW)i表示向量的第i个元素,A为判断矩阵。
运用上述步骤,本例具体计算如下:
〔1〕计算判断矩阵每一行元素的乘积
M2=2×1×3×2=12
〔2〕计算Mi的n次方根
〔3〕对向量
进行正规化
那么所求的特征向量
〔4〕计算判断矩阵的最大特征值λmax
那么
〔5〕一致性判断
λmax-n 4.4984-4
n-1 4-1
RI 0.9
所以不能到达满意一致性,修正原判断矩阵,重复上述计算步骤,直到一致
性检验通过。
表5-10评价指标判断矩阵计算
价格水平
质量水平
交货周期
售后效劳
权重
价格水平
1
2
3
3
0.4275
质量水平
1/2
1
5
2
0.3104
交货周期
1/3
1/5
1
1/4
0.0746
售后效劳
1/3
1/2
4
1
0.1876
表5-11价格水平供给商单排序计算
供给商层次单排序
价格水平指标排序
甲
乙
丙
丁
权重
甲
1
1
1/2
6
0.2539
乙
1
1
1/2
6
0.2539
丙
2
2
1
7
0.4438
丁
1/6
1/6
1/7
1
0.0484
其余四个判断矩阵的计算与上述步骤相同,计算结果如下:
表5-12质量水平供给商单排序计算
供给商层次单排序
质量水平指标排序
甲
乙
丙
丁
权重
甲
1
3
5
5
0.5723
乙
1/3
1
2
2
0.2090
丙
1/5
1/2
1
1
0.1094
丁
1/5
1/2
1
1
0.1094
表5-13交货周期供给商单排序计算
供给商层次单排序
交货周期指标排序
甲
乙
丙
丁
权重
甲
1
1
1/2
1/2
0.1650
乙
1
1
1/2
1/2
0.1650
丙
2
2
1
2
0.3925
丁
2
2
1/2
1
0.2775
λmax=4.0604CI=0.0201RI=0.9CR=0.0224
表5-14后援效劳供给商单排序计算
供给商层次单排序
售后效劳指标排序
甲
乙
丙
丁
权重
甲
1
3
5
5
0.5579
乙
1/3
1
3
3
0.2494
丙
1/5
1/3
1
1
0.0963
丁
1/5
1/3
1
1
0.0963
λmax=4.0434CI=0.0145RI=0.9CR=0.0161
第四步层次总排序计算及一致性检验
甲乙丙丁四个供给商相对域价格水平、质量水平、交货周期和售后效劳四项指标的层次总排序计算结果如下表所示
表5-15供给商总排序计算
价格水平
质量水平
交货周期
售后效劳
层次
总排序
0.4275
0.3104
0.0746
0.1875
甲
0.2539
0.5723
0.1650
0.5579
0.4031
乙
0.2539
0.2090
0.1650
0.2494
0.2325
丙
0.4438
0.1094
0.3925
0.0963
0.2710
丁
0.0484
0.1094
0.2775
0.0963
0.0934
最后,还要对层次总排序进行一致性检验,如果达不到满意指标,那么仍需调整前面的判断矩阵,层次总排序一致性检验如下:
CI=
RI=
CR=-----=----------=0.0110<0.1 符合一致性检验。
RI 0.9
从计算结果看,甲乙丙丁四家供给商的先后排序为:
甲、丙、乙、丁。
在企业物料采购实践中,不同的物料有不同的供给商选择评价模型,应根据实际需要不断地对模型予以修正。
综上所述,层次分析法计算原理与步骤如图5-2所示。
图5-2层次分析法计算过程