小升初数学总复习专题讲解及训练6比例的意义和基本性质.docx

上传人:b****8 文档编号:11402374 上传时间:2023-02-28 格式:DOCX 页数:11 大小:59.29KB
下载 相关 举报
小升初数学总复习专题讲解及训练6比例的意义和基本性质.docx_第1页
第1页 / 共11页
小升初数学总复习专题讲解及训练6比例的意义和基本性质.docx_第2页
第2页 / 共11页
小升初数学总复习专题讲解及训练6比例的意义和基本性质.docx_第3页
第3页 / 共11页
小升初数学总复习专题讲解及训练6比例的意义和基本性质.docx_第4页
第4页 / 共11页
小升初数学总复习专题讲解及训练6比例的意义和基本性质.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

小升初数学总复习专题讲解及训练6比例的意义和基本性质.docx

《小升初数学总复习专题讲解及训练6比例的意义和基本性质.docx》由会员分享,可在线阅读,更多相关《小升初数学总复习专题讲解及训练6比例的意义和基本性质.docx(11页珍藏版)》请在冰豆网上搜索。

小升初数学总复习专题讲解及训练6比例的意义和基本性质.docx

小升初数学总复习专题讲解及训练6比例的意义和基本性质

教师卷

小学数学总复习专题讲解及训练6-比例的意义和基本性质

(六)

主要内容

比例的意义和基本性质

学习目标

1、使学生初步理解图形的放大和缩小,能利用方格纸按一定比例将简单图形放大或缩小,初步体会图形的相似,进一步发展空间观念。

2、使学生联系图形的放大和缩小理解比例的意义和作用,认识比例的“项”、“内项”和“外项”;理解并掌握比例的基本性质,会应用比例的基本性质解比例。

3、使学生在认识比例、应用比例的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题的意义和能力,丰富解决问题的策略,发展对数学的积极情感。

考点分析

1、把一个图形按一定比放大或缩小,就是把它的每条边按一定的比放大或缩小。

2、表示两个比相等的式子叫做比例。

3、组成比例的四个数,叫做比例的项。

两端的两项叫做比例的外项,中间的两项叫做比例的内项。

4、在比例里,两个外项的积等于两个内项的积。

这叫做比例的基本性质。

5、根据比例的基本性质,如果已知比例中的任意三项,就可以求出这个比例中的另一个未知项。

求比例的未知项,叫做解比例。

典型例题

例1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)

AB

C

(1)长方形A的长是1.5厘米,宽是1厘米;长方形B的长是3厘米,宽是2厘米。

这两个长方形的长有什么关系?

宽呢?

(2)如果要把长方形A按1:

2的比缩小,长和宽应是原来的几分之几?

各是多少?

分析与解:

(1)长方形B的长是长方形A的2倍,宽也是长方形A的2倍。

或者说长方形B和长方形A长的比是2:

1,宽的比也是2:

1。

把长方形的每条边放大到原来的2倍,放大后的长方形的长和宽与原来长方形的比是2:

1,就是把长方形A的长和宽按2:

1的比进行放大。

(2)把长方形A按1:

2的比缩小后为长方形C,长、宽缩小为原来的

,图C的长是0.75厘米,图C的宽是0.5厘米。

由此可见,放大或缩小前后图形形状没有改变,还是长方形,只是大小变了。

例2、(根据指定的比,将图形按要求放大或缩小)

先按3:

2的比画出长方形A放大后的图形B,再按1:

2的比画出长方形A缩小后的图形C。

(1)图B的长、宽各是几格?

(2)图C呢?

(3)观察这三幅图形,你有什么发现?

A

B

C

分析与解:

(1)按3:

2的比将长方形A放大,即将长方形A的长与宽分别扩大1.5倍,那么图B的长为6×1.5=9格,宽为4×1.5=6格。

(2)按1:

2的比将长方形A缩小,即将长方形A的长与宽分别缩小到原来的

,那么图C的长为6÷2=3格,宽为4÷2=2格。

(3)从这三幅大小不同的图形上可以看出,放大或缩小后的图形与原来的图形比较,大小虽变了,但形状不变,而且各条边长度的变化都符合指定的比。

点评:

按比例放大图形或缩小图形,关键是要先根据比确定是放大还是缩小,然后确定好每条边的长度,画出图形就行了。

例3、(将两个相等比写成一个等式)

图B是由图A放大后得到的,你能分别写出这两幅图中各自的长与宽的比吗?

比较写出的两个比,你有什么发现?

B6厘米

4厘米

8厘米

A3厘米

分析与解:

(1)图A中长与宽的比是4:

3;图B中长与宽的原始比是8:

6,而8:

6化简后就是4:

3。

(2)这两个比化简后都是4:

3,比值相等,说明这两个比可以写成一个等式。

4:

3=8:

6或

=

,都读作:

4比3等于8比6。

例4、(认识比例)下面哪几组中的两个比能组成比例,把组成的比例写下来。

(1) 5 :

6 和15 :

18

(2)  0.2 :

0.1 和 3 :

1

(3) 

 :

 和 1.2 :

0.8 (4) 6 :

2 和

分析与解:

分别求出每组中两个比的比值,如果相等就能组成比例,不相等就不能组成比例。

(1) 因为5 :

6 =

,15 :

18=

,所以5 :

6 =15 :

18。

(2) 因为0.2 :

0.1 =2, 3 :

1=3,所以 0.2 :

0.1 和 3 :

1不能组成比例。

(3) 因为

 :

 =

, 1.2 :

0.8 =

,所以

 :

 =1.2 :

0.8。

(4) 6 :

2 =3,

=3,所以6 :

2 =

点评:

判断两个比能不能组成比例,可以像题目中的方法一样,求出两个比的比值,比值相等就能组成比例,否则就不行。

这样解题的依据是比例的意义。

例5、(比例的各部分名称和比例的基本性质)

一台织布机3小时织布3.6米,4小时织布4.8米。

你能根据数量间的关系写出比例吗?

分析与解:

(1)这台织布机织布米数和织布时间的比相等。

3.6 :

3 =4.8 :

4

(2)这台织布机织布米数的比和织布时间的比相等。

3.6 :

4.8 =3 :

4

(3)这台织布机织布时间和织布米数的比相等。

3 :

3.6 =4 :

4.8

介绍“项”:

组成比例的四个数,叫做比例的项。

两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:

3.6 :

3  =  4.8 :

4

内项

         外项

观察题中的三个比例,你有什么发现?

3.6 :

3 =4.8 :

43.6 :

4.8 =3 :

43 :

3.6 =4 :

4.8

(1)3.6和4可以同时做比例的外项,也可以同时做比例的内项。

(2)3.6×4=3×4.8,可见在比例中两个外项的积等于两个内项的积。

(3)如果把3.6 :

3 =4.8 :

4改写成分数形式

=

,等号两边的分子、分母分别交叉相乘,结果也相等。

(4)如果用字母表示比例的四个项,即a:

b=c:

d,

那么这个规律可表示成ad=bc或bc=ad。

(5)在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。

例6、(比例基本性质的应用)根据2×7=1.4×10这个等式写出几个比例。

分析与解:

根据比例的基本性质,可以得出2和7、1.4和10这两组数要么同时是比例的外项,要么同时是比例的内项。

1.4:

2=7:

101.4:

7=2:

10

10:

2=7:

1.410:

7=2:

1.4

2:

1.4=10:

72:

10=1.4:

7

7:

1.4=10:

27:

10=1.4:

2

点评:

像这样的比例一共可以写8个。

但它们不变的是2和7要么同时为内项,要么同时为外项,而1.4和10这一组数也一样。

写的时候可以一组一组地写了。

例7、(按比例放大的含义)

王叔叔在电脑上将下面的图片按比例放大,放大后的图片的长是12.5厘米,你有什么发现?

4厘米

5厘米

分析与解:

按比例放大就是把原图形中的各部分线段都按相同的比放大,放大前后的相关线段的厘米数是可以组成比例的。

两张图片长的比与宽的比可以组成比例,两张图片中各自长、宽的比也可以组成比例。

12.5:

5=宽:

4或12.5:

宽=5:

4

例8、(解比例)上图中宽是多少厘米?

分析与解:

在解比例时,根据比例的基本性质把比例转化为积相等的式子,然后再根据等式的性质来解答。

解:

设宽是ⅹ厘米。

12.5:

5=ⅹ:

4

5ⅹ=12.5×4┈┈根据比例的基本性质

5ⅹ=50

ⅹ=10

答:

放大后图片的宽是10厘米。

点评:

像上面这样求比例中的未知项,叫做解比例。

同学们,你会解答

=

这个比例吗?

试试看吧!

 

学生卷

例1、(把图形按某个比相应放大或缩小,形状没有改变,只是大小变了)

AB

C

(1)长方形A的长是1.5厘米,宽是1厘米;长方形B的长是3厘米,宽是2厘米。

这两个长方形的长有什么关系?

宽呢?

(2)如果要把长方形A按1:

2的比缩小,长和宽应是原来的几分之几?

各是多少?

例2、(根据指定的比,将图形按要求放大或缩小)

先按3:

2的比画出长方形A放大后的图形B,再按1:

2的比画出长方形A缩小后的图形C。

(1)图B的长、宽各是几格?

(2)图C呢?

(3)观察这三幅图形,你有什么发现?

A

B

C

例3、(将两个相等比写成一个等式)

图B是由图A放大后得到的,你能分别写出这两幅图中各自的长与宽的比吗?

比较写出的两个比,你有什么发现?

B6厘米

4厘米

8厘米

A3厘米

例4、(认识比例)下面哪几组中的两个比能组成比例,把组成的比例写下来。

(1) 5 :

6 和15 :

18

(2)  0.2 :

0.1 和 3 :

1

(3) 

 :

 和 1.2 :

0.8 (4) 6 :

2 和

例5、(比例的各部分名称和比例的基本性质)

一台织布机3小时织布3.6米,4小时织布4.8米。

你能根据数量间的关系写出比例吗?

例6、(比例基本性质的应用)根据2×7=1.4×10这个等式写出几个比例。

例7、(按比例放大的含义)

王叔叔在电脑上将下面的图片按比例放大,放大后的图片的长是12.5厘米,你有什么发现?

4厘米

5厘米

例8、(解比例)上图中宽是多少厘米?

模拟试题

1、一张长方形图片,长12厘米,宽9厘米。

按1:

3的比缩小后,新图片的长是()厘米,宽是()厘米,这张图片()不变,大小()。

2、一块正方形的花手帕,边长10厘米,将其按()的比放大后,边长变为30厘米。

3、按2:

1的比画出平行四边形放大后的图形,按1:

3的比画出长方形缩小后的图形。

 

4、应用比例的意义,判断下面哪一组中的两个比可以组成比例?

6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

5、在2∶5、12∶0.2、310∶15三个比中,与5.6∶14能组成比例的一个比是(        )。

6、在比例里,两个()的积和两个()积相等。

7、如果A×3=B×5,那么A∶B=()∶()。

8、从6、24、20、18与5这五个数中选出四个数组成一个比例是:

()∶()=()∶()。

9、根据3×8=4×6写成的比例是()、()或()。

10、甲数的25%等于乙数的75%,那么甲数与乙数的比是()∶()。

13、解比例

ⅹ∶3=∶=∶=∶x

 

∶x=3∶12∶x=5%∶0.6=

14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是()。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 职高对口

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1