最大公约数及最小公倍数应用.docx

上传人:b****7 文档编号:11382689 上传时间:2023-02-28 格式:DOCX 页数:10 大小:19.08KB
下载 相关 举报
最大公约数及最小公倍数应用.docx_第1页
第1页 / 共10页
最大公约数及最小公倍数应用.docx_第2页
第2页 / 共10页
最大公约数及最小公倍数应用.docx_第3页
第3页 / 共10页
最大公约数及最小公倍数应用.docx_第4页
第4页 / 共10页
最大公约数及最小公倍数应用.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

最大公约数及最小公倍数应用.docx

《最大公约数及最小公倍数应用.docx》由会员分享,可在线阅读,更多相关《最大公约数及最小公倍数应用.docx(10页珍藏版)》请在冰豆网上搜索。

最大公约数及最小公倍数应用.docx

最大公约数及最小公倍数应用

最大公约数与最小公倍数应用

(一)

一、知识要点:

1、性质1:

如果a、b两数的最大公约数为d,则a=md,b=nd,并且(m,n)=1。

例如:

(24,54)=6,24=4×6,54=9×6,(4,9)=1。

2、性质2:

两个数的最小公倍数与最大公约数的乘积等于这两个数的乘积。

a与b的最小公倍数[a,b]是a与b的所有倍数的最大公约数,并且a×b=[a,b]×(a,b)。

例如:

(18,12)=,[18,12]=(18,12)×[18,12]=

3、两个数的公约数一定是这两个数的最大公约数的约数。

3、辗转相除法

二、热点考题:

例1两个自然数的最大公约数是6,最小公倍数是72。

已知其中一个自然数是18,求另一个自然数。

(运用性质2)

练一练:

甲数是36,甲、乙两数的最大公约数是4,最小公倍数是288,求乙数。

例2两个自然数的最大公约数是7,最小公倍数是210。

这两个自然数的和是77,求这两个自然数。

分析与解:

如果将两个自然数都除以7,则原题变为:

“两个自然数的最大公约数是1,最小公倍数是30。

这两个自然数的和是11求这两个自然数。

例3已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。

分析与解:

因为12,15都是a的约数,所以a应当是12与15的公倍数,即是[12,15]=60的倍数。

再由[a,b,c]=120知,a只能是60或120。

[a,c]=15,说明c没有质因数2,又因为[a,b,c]=120=23×3×5,所以c=15。

练一练:

已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?

例4已知两个自然数的和是50,它们的最大公约数是5,求这两个自然数。

例5已知两个自然数的积为240,最小公倍数为60,求这两个数。

习题四

1.已知某数与24的最大公约数为4,最小公倍数为168,求此数。

2.已知两个自然数的最大公约数为4,最小公倍数为120,求这两个数。

3.已知两个自然数的和为165,它们的最大公约数为15,求这两个数。

4.已知两个自然数的差为48,它们的最小公倍数为60,求这两个数。

5.已知两个自然数的差为30,它们的最小公倍数与最大公约数的差为450,求这两个自然数。

6.已知两个自然数的和为900,它们的最大公约数与最小公倍数的乘积为432,求这两个自然数。

7、五年一班去划船,他们算了一下,如果增加一条船,正好每船坐6个,如果减少一条船,正好每船坐9人,这个班有多少人?

8、一个数被2除余1,被3除余2,被4除余3,被5除余4,被6除余5,此数最小是几?

9、已知A与B的最大公约数为6,最小公倍数为84,且A×B=42,求B。

10、已知A和B的最大公约数是31,且A×B=5766,求A和B。

11、有一盘水果,3个3个地数余2个,4个4个数余3,5个5个数余4个,问这个盘子里最少有多少个水果?

 

家庭练习

1.拖拉机前轮直径64厘米,后轮直径96厘米,拖拉机开动后,前轮至少转多少圈,才能使前、后轮同时着地的两点重新同时着地?

2.现在有香蕉42千克,苹果112千克,桔子70千克,平均分给幼儿园的几个班,每班分到的这三种水果的数量分别相等,那么最多分给了多少个班?

每个班至少分到了三种水果各多少千克?

3、一个数被2除余1,被3除余2,被4除余3,被5除余4,被6除余5,此数最小是几?

4、将72和120的乘积写成它们的最大公约数和最最小公倍数的乘积的形式。

5、两个自然数的最大公约数是12,最小公倍数是72。

满足条件的自然数有哪几组?

 

例1用自然数a去除498,450,414,得到相同的余数,a最大是多少?

分析与解:

因为498,450,414除以a所得的余数相同,所以它们两两之差的公约数应能被a整除。

498-450=48,450-414=36,498-414=84。

 所求数是(48,36,84)=12。

例2现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?

分析与解:

只知道三个自然数的和,不知道三个自然数具体是几,似乎无法求最大公约数。

只能从唯一的条件“它们的和是1111”入手分析。

三个数的和是1111,它们的公约数一定是1111的约数。

因为1111=101×11,它的约数只能是1,11,101和1111,由于三个自然数的和是1111,所以三个自然数都小于1111,1111不可能是三个自然数的公约数,而101是可能的,比如取三个数为101,101和909。

所以所求数是101。

练习:

1、在1000到2000之间,能同时被6、8、10这三个自然数整除的自然数一共有几个?

2、三个连续偶数,它们分别是12、14、16的倍数,比它们大的这样三个偶数最小各是多少?

3、四个连续自然数,它们分别是6、7、8、9的倍数,比它们大的这样四个自然数最小各是多少?

4、甲、乙、丙三人沿600米的环形跑道从同一地点出发同时同向跑步,甲每秒跑3米,乙每秒跑4米,丙每秒跑2米。

至少经过多少时间三人又同时从出发点出发?

5、两数的乘积是9000,它们的最大公因数是15,这个两数各是多少?

6、甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒。

三人同时从起点出发,最少需多长时间才能再次在起点相会?

7、两个小于150的数的积是2028,它们的最大公约数是13,求这两个数。

8、有一堆桔子,按每4个一堆分少1个,按每5个一堆分也少1个,按每6个一堆分还是少1个。

这堆桔子至少有多少个?

【例3】狐狸和袋鼠进行跳远比赛,狐狸每次跳4.5米,袋鼠每次跳2.75米,它们每秒都只跳一次。

比赛途中,从起点开始,每隔12.375米设一个陷阱,当它们之中一个先掉进陷阱时,另一个跳了多少米?

【例5】用长9厘米、宽6厘米、高4厘米的长方体搭一个正方体,至少需要多少块这样的长方体木块?

 

【例6】

(1)A、B两数的乘积是216,它们的最小公倍数是36。

A、B两数的最大公因数是多少?

(2)甲乙两数的最小公倍数是288,最大公因数是4,甲数是36,乙数是多少?

【例7】加工某种机器零件,要经过三道工序.第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?

 

练习:

1.甲数是乙数的三分之一,甲数和乙数的最小公倍数是54,甲数是多少?

乙数是多少?

 

2.一块长方形地面,长120米,宽60米,要在它的四周和四角种树,每两棵之间的距离相等,最少要种树苗多少棵?

每相邻两棵之间的距离是多少米?

 

3.已知两个自然数的积是5766,它们的最大公约数是31.求这两个自然数。

 

4.有一队同学去野炊,吃饭时,他们两人一个饭碗,三个人一个菜碗,四个人一个汤碗,一共用了91个碗。

参加野炊的至少有多少同学?

 

带余数的除法

  前面我们讲到除法中被除数和除数的整除问题.除此之外,例如:

16÷3=5…1,即16=5×3+1.此时,被除数除以除数出现了余数,我们称之为带余数的除法。

  一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r。

  当r=0时,我们称a能被b整除。

  当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).用带余除式又可以表示为a÷b=q…r,0≤r<b。

例1一个两位数去除251,得到的余数是41.求这个两位数。

分析这是一道带余除法题,且要求的数是大于41的两位数.解题可从带余除式入手分析。

  解:

∵被除数÷除数=商…余数,

  即被除数=除数×商+余数,

∴251=除数×商+41,

  251-41=除数×商,

∴210=除数×商。

∵210=2×3×5×7,

∴210的两位数的约数有10、14、15、21、30、35、42、70,其中42和70大于余数41.所以除数是42或70.即要求的两位数是42或70。

例2用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?

  解:

∵被除数=除数×商+余数,

  即被除数=除数×40+16。

  由题意可知:

被除数+除数=933-40-16=877,

∴(除数×40+16)+除数=877,

∴除数×41=877-16,

  除数=861÷41,

  除数=21,

∴被除数=21×40+16=856。

  答:

被除数是856,除数是21。

例3某年的十月里有5个星期六,4个星期日,问这年的10月1日是星期几?

  解:

十月份共有31天,每周共有7天,

∵31=7×4+3,

∴根据题意可知:

有5天的星期数必然是星期四、星期五和星期六。

∴这年的10月1日是星期四。

例43月18日是星期日,从3月17日作为第一天开始往回数(即3月16日(第二天),15日(第三天),…)的第1993天是星期几?

  解:

每周有7天,1993÷7=284(周)…5(天),

  从星期日往回数5天是星期二,所以第1993天必是星期二.

例5一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。

  这是一道古算题.它早在《孙子算经》中记有:

“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?

  关于这道题的解法,在明朝就流传着一首解题之歌:

“三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知.”意思是,用除以3的余数乘以70,用除以5的余数乘以21,用除以7的余数乘以15,再把三个乘积相加.如果这三个数的和大于105,那么就减去105,直至小于105为止.这样就可以得到满足条件的解.其解法如下:

  方法1:

2×70+3×21+2×15=233

  233-105×2=23

  符合条件的最小自然数是23。

例5的解答方法不仅就这一种,还可以这样解:

  方法2:

[3,7]+2=23

  23除以5恰好余3。

  所以,符合条件的最小自然数是23。

  方法2的思路是什么呢?

让我们再来看下面两道例题。

例6一个数除以5余3,除以6余4,除以7余1,求适合条件的最小的自然数。

分析“除以5余3”即“加2后被5整除”,同样“除以6余4”即“加2后被6整除”。

  解:

[5,6]-2=28,即28适合前两个条件。

  想:

28+[5,6]×?

之后能满足“7除余1”的条件?

  28+[5,6]×4=148,148=21×7+1,

  又148<210=[5,6,7]

  所以,适合条件的最小的自然数是148。

例7一个数除以3余2,除以5余3,除以7余4,求符合条件的最小自然数。

  解:

想:

2+3×?

之后能满足“5除余3”的条件?

  2+3×2=8。

  再想:

8+[3,5]×?

之后能满足“7除余4”的条件?

  8+[3,5]×3=53。

∴符合条件的最小的自然数是53。

  归纳以上两例题的解法为:

逐步满足条件法.当找到满足某个条件的数后,为了再满足另一个条件,需做数的调整,调整时注意要加上已满足条件中除数的倍数。

  解这类题目还有其他方法,将会在有关“同余”部分讲到。

例8一个布袋中装有小球若干个.如果每次取3个,最后剩1个;如果每次取5个或7个,最后都剩2个.布袋中至少有小球多少个?

  解:

2+[5,7]×1=37(个)

∵37除以3余1,除以5余2,除以7余2,

∴布袋中至少有小球37个。

例969、90和125被某个正整数N除时,余数相同,试求N的最大值。

分析在解答此题之前,我们先来看下面的例子:

  15除以2余1,19除以2余1,

  即15和19被2除余数相同(余数都是1)。

  但是19-15能被2整除.

  由此我们可以得到这样的结论:

如果两个整数a和b,均被自然数m除,余数相同,那么这两个整数之差(大-小)一定能被m整除。

  反之,如果两个整数之差恰被m整除,那么这两个整数被m除的余数一定相同。

  例9可做如下解答:

∵三个整数被N除余数相同,

∴N|(90-69),即N|21,N|(125-90),即N|35,

∴N是21和35的公约数。

∵要求N的最大值,

∴N是21和35的最大公约数。

∵21和35的最大公约数是7,

∴N最大是7。

例6甲乙两数的乘积是2700,甲乙两数的最大公因数是15。

甲乙两数各是多少?

 

练习

1、一X长方形纸,长72厘米,宽48厘米,把它裁成若干个相等的小正方形而没有剩余,要正方形尽可能大,可以裁多少个正方形?

2、当商取整数时,用某数去除410余5,去除242少1,去除550余10,这个数最大是多少?

3、两个数的和是836,其中一个数的末尾是0,如果把这个0抹去就与另一个数相等,这两个数各是多少?

4、两个数的最大公约数是6,最小公倍数是144,求这两个数是多少。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1