小学数学典型的25道习题.docx

上传人:b****7 文档编号:11282703 上传时间:2023-02-26 格式:DOCX 页数:10 大小:18.87KB
下载 相关 举报
小学数学典型的25道习题.docx_第1页
第1页 / 共10页
小学数学典型的25道习题.docx_第2页
第2页 / 共10页
小学数学典型的25道习题.docx_第3页
第3页 / 共10页
小学数学典型的25道习题.docx_第4页
第4页 / 共10页
小学数学典型的25道习题.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

小学数学典型的25道习题.docx

《小学数学典型的25道习题.docx》由会员分享,可在线阅读,更多相关《小学数学典型的25道习题.docx(10页珍藏版)》请在冰豆网上搜索。

小学数学典型的25道习题.docx

小学数学典型的25道习题

小学数学典型的25道习题

  1把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?

  解题思路:

  把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。

  答题:

  解:

9÷(3-1)×(5-1)=18(分)

  答:

锯成5段需要18分钟。

  2.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。

原有男工多少人?

女工多少人?

  解题思路:

  女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。

这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。

这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。

  答题:

  解:

35÷(2-1)=35(人)

  女工原有:

  35+17=52(人)

  男工原有:

  52+35=87(人)

  答:

原有男工87人,女工52人。

  3.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?

  解题思路:

  由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。

由去时5小时到达和返回时多用1小时,可求出返回时所用时间。

  答题:

  解:

12×5÷(5+1)=10(千米)

  答:

返回时平均每小时行10千米。

  5.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。

如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?

  解题思路:

  由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。

  答题:

  解:

18÷(5+4)=2(小时)

  8×2=16(千米)

  答:

狗跑了16千米。

  6.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。

三种球各有多少个?

  解题思路:

  由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。

  答题:

  解:

总个数:

  (21+20+19)÷2=30(个)

  白球:

30-21=9(个)

  红球:

30-20=10(个)

  黄球:

30-19=11(个)

  答:

白球有9个,红球有10个,黄球有11个。

  7.在一根粗钢管上接细钢管。

如果接2根细钢管共长18米,如果接5根细钢管共长33米。

一根粗钢管和一根细钢管各长多少米?

  解题思路:

  根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。

  答题:

  解:

(33-18)÷(5-2)=5(米)

  18-5×2=8(米)

  答:

一根粗钢管长8米,一根细钢管长5米。

  8.水泥厂原方案12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原方案每天生产水泥多少吨?

  解题思路:

  由题意知,实际10天比原方案10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原方案还需用(12-10)天才能完成,也就是说原方案(12-10)天能生产水泥(4.8×10)吨。

  答题:

  解:

4.8×10÷(12-10)=24(吨)

  答:

原方案每天生产水泥24吨。

  9.学校举办歌舞晚会,共有80人参加了表演。

其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?

  解题思路:

  由题意知,实际10天比原方案10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原方案还需用(12-10)天才能完成,也就是说原方案(12-10)天能生产水泥(4.8×10)吨。

  答题:

  解:

4.8×10÷(12-10)=24(吨)

  答:

原方案每天生产水泥24吨。

  10.学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。

双科都参加的有多少人?

  解题思路:

  参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。

  答题:

  解:

36+38+5-59=20(人)

  答:

双科都参加的有20人。

  11.学校买了4张桌子和6把椅子,共用640元。

2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?

  解题思路:

  由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。

  答题:

  解:

5×(4÷2)+6=16(把)

  640÷16=40(元)

  40×5÷2=10O(元)

  答:

桌子和椅子的单价分别是100元、40元。

  12.父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?

  解题思路:

  5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。

  答题:

  解:

(45-5)÷4+5=10+5=15(岁)

  答:

今年儿子15岁。

  13.有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?

  解题思路:

  “如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:

甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。

  答题:

  解:

18×2÷(4-1)=12(千克)

  12×4=48(千克)

  答:

原来甲桶有油48千克,乙桶有油12千克。

  14.光明小学举办数学知识竞赛,一共20题。

答对一题得5分,答错一题扣3分,不答得0分。

小丽得了79分,她答对几道,答错几道,有几题没答?

  解题思路:

  根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。

小丽共失去(100-79)分。

再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。

  答题:

  解:

(5×20-75)÷8=2(题)……5(分)

  20-2-1=17(题)

  答:

答对17题,答错2题,有1题没答。

  15.光明小学举办数学知识竞赛,一共20题。

答对一题得5分,答错一题扣3分,不答得0分。

小丽得了79分,她答对几道,答错几道,有几题没答?

  解题思路:

  “从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。

根据路程、速度和时间的关系,就可求得所需时间。

  答题:

  解:

(240+264)÷(20+16)=504÷30=14(秒)

  答:

从两车头相遇到两车尾相离,需要14秒。

  16.一列火车长600米,通过一条长1150米的隧道,火车的速度是每分700米,问火车通过隧道需要几分?

  解题思路:

  火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。

  答题:

  解:

(600+1150)÷700=1750÷700=2.5(分)

  答:

火车通过隧道需2.5分。

  17.小明从家里到学校,如果每分走50米,那么正好到上课时间;如果每分走60米,那么离上课时间还有2分。

问小明从家里到学校有多远?

  解题思路:

  在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。

  答题:

  解:

60×2÷(60-50)=12(分)

  50×12=600(米)

  答:

小明从家里到学校是600米。

  18.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?

  解题思路:

  由条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。

  答题:

  解:

600÷(400-300)=600÷100=6(分)

  答:

经过6分钟两人第一次相遇

  19.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。

这个长方形纸板原来的面积是多少?

  解题思路:

  由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:

(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。

  答题:

  解:

(12÷2)×(8÷2)=24(平方厘米)

  答:

这个长方形纸板原来的面积是24平方厘米。

  20.妈妈买苹果和梨各3千克,付出20元找回7.4元。

每千克苹果2.4元,每千克梨多少元?

  解题思路:

  用去的钱数除以3就是1千克苹果和1千克梨的总钱数。

从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。

  答题:

  解:

(20-7.4)÷3-2.4=12.6÷3-2.4=4.2-2.4=1.8(元)

  答:

每千克梨1.8元。

  21.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。

甲的速度是乙的2倍,甲乙两人每小时各行多少千米?

  解题思路:

  由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。

  答题:

  解:

135÷3÷(2+1)=15(千米)

  15×2=30(千米)

  答:

甲乙每小时分别行30千米、15千米。

  22.盒子里有同样数目的黑球和白球。

每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。

一共取了几次?

盒子里共有多少个球?

  解题思路:

  两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。

  答题:

  解:

12÷(8-5)=4(次)

  8×4+5×4+12=64(个)

  或8×4×2=64(个)

  答:

一共取了4次,盒子里共有64个球。

  23.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

  解题思路:

  1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。

也就是它们的最小公倍数。

  答题:

  解:

12和18的最小公倍数是36

  6时+36分=6时36分

  答:

下次同时发车时间是上午6时36分。

  24.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?

  解题思路:

  父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。

又知今年儿子15岁,两个岁数的差就是所求的问题。

  答题:

  解:

(45-15)÷(11-1)=3(岁)

  15-3=12(年)

  答:

12年前父亲的年龄是儿子年龄的11倍。

  25.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。

问这盒铅笔最少有多少支?

  解题思路:

  根据题意,可以将题中的条件转化为:

平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。

  答题:

  解:

2、3、4、5的最小公倍数是60

  60-1=59(支)

  答:

这盒铅笔最少有59支。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 营销活动策划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1