最新ansys140深沟球轴承接触分析.docx

上传人:b****7 文档编号:11221330 上传时间:2023-02-25 格式:DOCX 页数:17 大小:1.06MB
下载 相关 举报
最新ansys140深沟球轴承接触分析.docx_第1页
第1页 / 共17页
最新ansys140深沟球轴承接触分析.docx_第2页
第2页 / 共17页
最新ansys140深沟球轴承接触分析.docx_第3页
第3页 / 共17页
最新ansys140深沟球轴承接触分析.docx_第4页
第4页 / 共17页
最新ansys140深沟球轴承接触分析.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

最新ansys140深沟球轴承接触分析.docx

《最新ansys140深沟球轴承接触分析.docx》由会员分享,可在线阅读,更多相关《最新ansys140深沟球轴承接触分析.docx(17页珍藏版)》请在冰豆网上搜索。

最新ansys140深沟球轴承接触分析.docx

最新ansys140深沟球轴承接触分析

 

ansys-14.0深沟球轴承接触分析

13深沟球轴承接触分析

13.1实践任务和目的

滚动轴承的刚度、接触应力及寿命是工程应用中关心的热点问题。

滚动轴承接触分析的困难在于滚动体与圈体的接触,滚动体在载荷为0的情况下与圈体接触为一点,随着载荷的增大,点接触变为面接触。

接触区域的位置、大小、形状、接触面压力及摩擦力分布等接触参数在分析前未知,它们随外载荷变,是典型的边界非线性问题。

深沟球轴承结构简单、使用方便,是生产批量最大、应用范围最广的一类轴承。

本实验以618/5深沟球轴承为代表,利用ansys软件的建立深沟球轴承的三维有限元模型。

通过加载边界条件,进行面-面接触分析,得出轴承的接触应力分布。

轴承弹性模量E=210GPa,泊松比0.3,作用在轴承上的力P=3.472Mpa。

13.2实验环境

Ansys14.0及其以上版本软件,win7以上版本操作系统

13.3实践准备

接触问题是一种高度非线性行为,需要较大的计算资源,为了进行有效的计算,理解问题的特性和建立合理的模型是很重要的。

接触问题分为两种基本类型:

刚体─柔体的接触,柔体─柔体的接触,在刚体─柔体的接触问题中,接触面的一个或多个被当作刚体,(与它接触的变形体相比,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体─柔体的接触,许多金属成形问题归为此类接触;另一类,柔体─柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。

1)接触分析的基本概念

①接触协调

因为实际接触体相互不穿透,Ansys在这两个接触面间建立一种关系,防止它们在有限元分析中相互穿过。

将程序防止接触面间相互穿透作用称为强制接触协调。

如果没有强制接触协调,接触面间会发生穿透。

②罚函数法

罚函数法用一个接触“弹簧”在两个接触面间建立关系实现接触协调的方法,弹簧刚度称为惩罚参数(也可叫接触刚度)。

当接触面分开时(开状态),弹簧不起作用;当面开始穿透时(闭合),弹簧起作用,弹簧偏移量满足平衡方程:

F=k△;式中k是接触刚度,△为穿透量,如图13.1所示。

 

图13.1罚函数法

为了使得平衡方程有意义,穿透量△必须大于0,然而,实际的接触体相互不穿透,因此,为了保证计算精度,应该使发生在接触界面处的穿透量最小,这意味着,理想的接触刚度应该是个非常大的值,但接触刚度太大,一个微小的穿透将会产生一个过大的接触力,在下一次迭代计算中可能会将接触面推开。

另外用太大的接触刚度通常会导致收敛振荡,并且常会发散。

③lagrange乘子法

lagrange乘子法是另外一种接触协调方法,通过增加一个附加自由度(接触压力)来满足不可穿透条件。

④增广lagrange法

增广lagrange法是将罚函数法和lagrange乘子法结合起来强制接触协调,在迭代的开始,接触协调基于惩罚刚度确定。

一旦达到平衡,检查穿透容差,然后根据需要调整附加自由度(接触压力),进行后续迭代计算。

 

图13.2增广lagrange法

⑤接触刚度

接触刚度是影响精度和收敛行为的最重要的参数,对于面-面接触,Ansys通过采用下层单元的刚度乘以系数(法向接触刚度因子:

FKN)来确定接触刚度。

作为起始估计,对于接触中的大块实体FKN可取值1.0,对于柔性较大(弯曲为主)的部件FKN可取值0.1。

在实际中,选择一个好的刚度值需要取不同的FKN值进行计算并结合相应的试验才能获得。

⑥穿透容差

穿透容差也是影响精度和收敛行为的重要参数,对于面-面接触,Ansys通过采用下层单元的深度(h)乘以所给出的系数(穿透容差系数:

FTOLN)确定穿透容差。

在确定FTOLN时,需要注意下面几点:

●不要用一个软FKN和一个紧FTOLN,要用合理的FTOLN值“协调”穿透;

●太小的FTOLN值将导致收敛困难,别用太小的容差值,增大FKN将减少穿透;.

●尽管增大FKN100倍通常相应地会减少穿透,,然而其它重要项,如接触压力,可能至少会改变5%。

2)接触单元

Ansys有三种类型的接触单元:

①节点对节点

点─点接触单元主要用于模拟点─点的接触行为,为了使用点─点的接触单元,需要预先知道接触位置,这类接触问题只能适用于接触面之间有较小相对滑动的情况(即使在几何非线性情况下)。

如果两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)保持小量,那么可以用点─点的接触单元来求解面─面的接触问题,过盈装配问题是一个用点─点的接触单元来模拟面与面的接触问题的典型例子。

②节点对面

点─面接触单元主要用于给点与面的接触行为建模,例如两根梁的相互接触。

使用这类接触单元,不需要预先知道确切的接触位置,接触面之间也不需要保持一致的网格,并且允许有大的变形和大的相对滑动。

③面对面

ANSYS中最常用的接触单元是面-面单元,这些接触单元采用接触对概念,接触对由目标面和接触面组成。

刚性面被当作“目标”面,柔性体的表面被当作“接触”面,一个目标单元和一个接单元称为一个“接触对”,Ansys通过一个共享的实常号来识别“接触对”,为了建立一个“接触对”给目标单元和接触单元指定相同的实常号。

面─面接触单元有下面优点:

●支持低阶和高阶单元;

●支持有大滑动和摩擦的大变形;

●提供工程目的采用的更好的接触结果,例如法向压力和摩擦应力;

●通过控制节点实现对刚性面的控制。

3)选择接触面和目标面的原则

目标面的选择遵循下面几条原则:

●如果一个凸面与一个平面或凹面进入接触,平面和凹面应该是目标面;

●如果一个面比另一个面更硬,较硬的面应该是目标面;

●如果一个面是高阶,另一个面是低阶,低阶面应该是目标;

●如果一个面网格粗糙,另一个面网格较细,那么网格粗糙的表面应该是目标面;

●如果一个面比另外一个面更大,较大的面应该是目标面。

4)本实验单位量纲确定

本实验采用的单位为Kg-mm-s,相应量纲单位换算如下:

E=210GPa=210×109N/m2=210×109(kg.m/s2)/m2=2.1×1011(kg/(s2m))=2.1×1011(kg/(s2×103×mm))=2.1×108(kg/(s2mm));

P=3.472Mpa=3472(kg/(s2mm));

13.4实验内容和步骤

Step1改变工作名和工作路径

①拾取菜单UtilityMenu→File→ChangeJohname。

弹出“ChangeJobname”对话框,在“[/FILNAME]”文本框中输入bearing,单击“OK”按钮完成工作名设定。

②拾取菜单UtilityMenu→File→ChangeDirectory。

弹出“浏览文件夹”对话框,在对话框中选中预先建立的工作目录文件“test13”,单击“确定”按钮完成工作路径设置。

Step2选择单元类型

拾取菜单MainMenu→Preprocessor→ElementType→Add/Edit/Delete。

弹出“单元类型”的对话框,单击对话框中的“Add”按钮,弹出如图13.3所示的单元类型库对话框,在对话框左侧列表中选择“Solid”,在右侧列表中选择“Brick8node185”,单击“OK”按钮完成单元创建。

再单击“单元类型”对话框的“Close”按钮关闭对话框。

 

图13.3单元类型库对话框

命令:

ET,1,Solid185!

定义单元

Step3定义材料特性

拾取菜单MainMenu→Preprocessor→MaterialProps→MaterialModels,弹出“DefineMaterialModelBehavior”的对话框,在右侧列表中依次单击“Structure”、“Linear”、“Elastic”、“Isotropic”,弹出“材料属性设置”对话框,在“EX”文本框中输入2.1e8,在“PRXY”文本框中输入0.3(泊松比);单击“OK”按钮完成材料的弹性属性定义,如图13.4所示。

 

图13.4材料属性设置对话框

命令:

MP,EX,1,2.1e8!

定义弹性模量

MP,PRXY,1,0.3!

定义泊松比

Step4建立几何模型

①偏移工作平面

拾取菜单UtilityMenu→WorkPlane→OffsetWPto→XYZLocations,在弹出的“OffsetWPtoXYZLocations”对话框的文本框中输入0,0,-5.5,输入后单击“OK”按钮完成将工作平面偏移到指定位置的操作。

拾取菜单UtilityMenu→WorkPlane→DisplayWorkingPlane,在工作区显示工作平面。

②创建轴承的外环和内环

拾取菜单MainMenu→preprocessor→Modeling→Volumes→Cylinder→HollowCylinder,弹出图13.5所示的对话框,按图输入数字(0,0,17.5,13.8,11)后单击“Apply”按钮完成轴承外环的创建。

再按图输入数字(0,0,9.7,5,11)后单击“OK”按钮完成轴承内环的创建。

 

 

图13.5创建轴承几何模型

③创建中间滚道

拾取菜单UtilityMenu→WorkPlane→OffsetWPto→GlobalOrigin,将工作平面恢复到原始位置,再拾取菜单MainMenu→preprocessor→Modeling→Volumes→Torus,弹出图13.5所示的对话框,按图输入数字(3.2,0,11.75,0,360)后单击“OK”按钮完成中间圆环的创建。

然后拾取菜单MainMenu→preprocessor→Modeling→Operate→Boolean→Subtract→Volumes,在弹出的拾取对话框中先选择内外环(V1,V2)作为被减除对象,单击“OK”按钮后,在选取中间圆环(V3)作为减除对象,单击“OK”按钮完成中间滚道创建。

④创建滚珠

拾取菜单MainMenu→preprocessor→Modeling→Volumes→Sphere→SolidSphere,按图输入数字(3.2,0,-11.75,3.2)后单击“OK”按钮完成一个滚珠的创建。

再拾取菜单UtilityMenu→WorkPlane→ChangeActiveCSto→GlobalCylindrial将激活坐标系转换为柱坐标系,然后拾取菜单MainMenu→preprocessor→Modeling→Volumes,弹出的拾取对话框中,在工作区选择滚珠,单击“OK”按钮弹出图13.5所示的对话框,按图输入数字(7,0,360/7,0)后单击“OK”按钮完成滚珠的复制。

Step5划分网格

拾取菜单MainMenu→preprocessor→Meshing→meshtool,弹出图13.6所示的“Meshtool”对话框,选中“SmartSize”复选框,指定网格划分的粗细程度为3级,再在“Meshtool”对话框选中“Mesh”的类型为“Volumes”,网格的“Shape”为“Tet”,划分方式为“Free”,单击“Mesh”按钮,在弹出的“MeshVolumes”对话框中单击“PickAll”按钮完成连杆的网格划分,划分后的网格效果如图13.6所示。

 

图13.6划分网格

命令:

SMRT,3!

设置网格粗细

VMESH,1!

划分网格

Step6创建接触对

①创建外环与滚珠之间的接触对

拾取菜单MainMenu→preprocessor→Modeling→Create→ContactPair,弹出图13.7所示“ContactManager”对话框,单击左上角“ContactWizard”按钮

,弹出图13.7所示的接触对设置向导,单击“PickTarget”按钮,在弹出选取对话框中选取外环的轨道槽面(A21,A22)作为目标面;单击“Next”按钮切换到接触面选择对话框,单击“PickContact”按钮,在弹出选取对话框中选择滚珠与外环接触的面(6,10,14,16,30,32,34)作为接触面;单击“Next”按钮切换到摩擦属性设置对话框,在“CoefficientofFriction”(摩擦系数)文本框中输入0.2;单击“OptionSettings”按钮,在弹出的接触对属性设置对话框的Basic选项中“NormalPenaltystiffiness”((法向接触刚度因子:

FKN)文本框中输入0.1,“Penetrationtolerance”(穿透容差系数:

FTOLN)文本框中输入0.1,其余项采用默认值,完成后单击“OK”按钮确定,然后单击“Create”完成外环与滚珠之间接触对的创建。

 

图13.7创建接触对

②创建内环与滚珠之间的接触对

拾取菜单MainMenu→preprocessor→Modeling→Create→ContactPair,弹出“ContactManager”对话框,单击左上角“ContactWizard”按钮

,弹出接触对设置向导,单击“PickTarget”按钮,在弹出选取对话框中选取外环的轨道槽面(A27,A28)作为目标面;单击“Next”按钮切换到接触面选择对话框,单击“PickContact”按钮,在弹出选取对话框中选择滚珠与外环接触的面(5,9,13,15,29,31,33)作为接触面;单击“Next”按钮切换到摩擦属性设置对话框,在“CoefficientofFriction”(摩擦系数)文本框中输入0.2;单击“OptionSettings”按钮,在弹出的接触对属性设置对话框的Basic选项中“NormalPenaltystiffiness”((法向接触刚度因子:

FKN)文本框中输入0.1,“Penetrationtolerance”(穿透容差系数:

FTOLN)文本框中输入0.1,其余项采用默认值,完成后单击“OK”按钮确定,然后单击“Create”完成内环与滚珠之间接触对的创建。

Step7添加约束

拾取菜单MainMenu→Solution→DefineLoads→Apply→Structural→Displacement→OnAreas。

弹出拾取窗口,拾取轴承外环的侧面和外表面(A1,A2,A3,A4),如图13.8所示,单击“OK”按钮,在弹出的约束对话框选择AllDOF(约束选定几何面的所有自由度),单击“OK”按钮结束约束设置。

 

图13.8施加约束

 

Step8添加压力载荷

拾取菜单MainMenu→Solution→DefineLoads→Apply→Structural→Pressure→OnAreas。

弹出拾取窗口,拾取轴承内环的下表面(A12),如图13.9所示,单击“OK”按钮,在弹出的约束对话框的VALUE文本框中输入3472,单击“OK”按钮载荷添加。

 

图13.9施加载荷

Step9模型求解分析

①设置分析类型

拾取菜单MainMenu→Solution→AnalysisType→NewAnalysis。

弹出“NewAnalysis”对话框,选中“Static”(静态分析)单选框,单击“OK”按钮完成分析类型选择。

②设置时间步长和载荷时间

拾取菜单MainMenu→Solution→AnalysisType→Sol’nControls,弹出图13.10所示“SolutionControl”对话框,打开“Basic”选项卡,在“AnalysisOptions”下拉列表框中选择“SmallDisplacementTransient”小变形,在“Timeatendofloadstep”文本框中输入分析截至时间为1.2。

在“Automatictimestepping”下拉列表框中选择“On”(打开自动时间步长),在“Numberofsubsteps”文本框中输入50,在“Maxnoofsubsteps”文本框中输入50,在“Minnoofsubsteps”文本框中输入10,在右端下方的“Frequency”下拉列表框中选择“Writeeverysubstep”写入每个载荷步结果,完成后单击“OK”按钮进行确定。

 

图13.10求解设置

③计算求解

拾取菜单MainMenu→Solution→Solve→CurrentLS,弹出“SolveCurrentLoadStp”对话框,单击“OK”按钮开始求解,当出现Note提示信息框时,表示求解结束,单击“Close”按钮关闭对话框。

命令SOLVE!

计算当前模型。

Step10结果后处理

①查看合位移云图

拾取菜单MainMenu→GeneralPostProc→PlotResults→ContourPlot→NodalSolu,弹出“ContourNodalSolutionData”对话框如,选择“NodalSolution”、“DOFsolution”、“Displacementvectorsum”(合位移),单击“OK”按钮,在工作区可以看到合位移云图。

如图13.11所示。

 

图13.11合位移云图

 

命令/Post1!

进入通用后处理器

Plnsol,u,sum,0,1.0!

显示合位移云图

②查看等效应力分布云图

拾取菜单MainMenu→GeneralPostProc→PlotResults→ContourPlot→NodalSolu,弹出“ContourNodalSolutionData”对话框如,选择“NodalSolution”、“Stress”、“vonmassStress”(等效应力),单击“OK”按钮,在工作区可以看到等效应力云图。

如图13.12所示。

命令/Post1!

进入通用后处理器

Plnsol,s,eqv!

显示等效应力云图

 

图13.12等效应力云图

③查看接触应力分布云图

拾取菜单MainMenu→GeneralPostProc→PlotResults→ContourPlot→NodalSolu,弹出“ContourNodalSolutionData”对话框如,选择“NodalSolution”、“Contact”、“ContactPressure”(接触应力),在下方“UndisplacedShapeKey”处选择“DeformedshapewithUndeformedModel”,完成后单击“OK”按钮,在工作区可以看到接触应力云图。

如图13.13所示。

 

图13.13接触应力云图

 

13.5课后练习

一对啮合的齿轮在工作时产生接触,分析其接触应力的大小。

大齿轮:

模数2mm,齿数50,材料45钢,泊松比0.259,弹性模量2.09E11;小齿轮:

模数2mm,齿数30,材料40Cr,泊松比0.277,弹性模量2.11E11。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿理论经验

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1