单轴拉伸试验下砖的实验研究英文中文翻译.docx

上传人:b****7 文档编号:11211681 上传时间:2023-02-25 格式:DOCX 页数:20 大小:3.28MB
下载 相关 举报
单轴拉伸试验下砖的实验研究英文中文翻译.docx_第1页
第1页 / 共20页
单轴拉伸试验下砖的实验研究英文中文翻译.docx_第2页
第2页 / 共20页
单轴拉伸试验下砖的实验研究英文中文翻译.docx_第3页
第3页 / 共20页
单轴拉伸试验下砖的实验研究英文中文翻译.docx_第4页
第4页 / 共20页
单轴拉伸试验下砖的实验研究英文中文翻译.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

单轴拉伸试验下砖的实验研究英文中文翻译.docx

《单轴拉伸试验下砖的实验研究英文中文翻译.docx》由会员分享,可在线阅读,更多相关《单轴拉伸试验下砖的实验研究英文中文翻译.docx(20页珍藏版)》请在冰豆网上搜索。

单轴拉伸试验下砖的实验研究英文中文翻译.docx

单轴拉伸试验下砖的实验研究英文中文翻译

ExperimentalInvestigationofBricksUnder

UniaxialTensileTesting

BSTRACT

Softeningisagradualdecreaseofmechanicalresistanceresultingfromacontinuousincreaseofdeformationimposedonamaterialspecimenorstructure.Itisasalientfeatureofquasi-brittlematerialslikeclaybrick,mortar,ceramics,stoneorconcretewhichfailduetoaprocessofprogressiveInternalcrackgrowth.Suchmechanicalbehaviouriscommonlyattributedtotheheterogeneityofthematerial,duetothepresenceofdifferentphasesandmaterialdefects,suchasflawsandvoids.Fortensilefailurethisphenomenonhasbeenwellidentifiedforconcretebutveryfewresultsexistsforclaybrick..Inthepresentpaper,theresultsofanextensivesetoftestscarriedoutatUniversityofMinhoandincludingthreedifferenttypesofbackunderniaxialtensionwillbepresented.Bothtensilestrengthandfractureenergyarequantified,withrecommendationsfortheadoptionofpracticalvalues.

INTRODUCTION

Thetensilebehaviourofconcreteandotherquasi-brittlematerialsthathaveadisorderedInternalstructure,suchasbrick.canbewelldescribedbythecohesivecrackmodelproposedinitiallybyHILLERBORG[1].Thismodelhasbeenwidelyusedasthefundamentalmodelthatdescribesthenon-linearfracturemechanicsofquasi-brittlematerials,e.g.[2,3].Accordingtothismodelandduetocrackinglocalization,whichisacharacteristicoffractureprocessInquasi-brittlematerials,thetensilebehaviourIscharacterizedbytwoconstitutivelawsassociatedwithdifferentzonesofthematerialduringtheloadingprocess.seeFigure1.Theelastic-plasticstress-strainrelationshipofFigurelaisvaliduntilthepeakloadisreached.ItisnotedthatbeforethepeakInelasticbehaviouroccursduetomicro-crackingandtheenergydissipatedinthisprocessisusuallyneglectedforthecalculationofthefractureenergy.Thestress-crackopeningdisplacementrelationshipofFigurelbdescribesthestrainsofteningbehaviourinthefractureprocesszoneafterthepeak.Thecohesivestress-openingdisplacementdiagramIscharacterizedbythegradualdecreaseofstressfromftmaximumvalue,tozero,correspondingtotheIncreaseofthedistancebetweenthetwoedgesofthecrackfromzerotothecriticalopening,u,ThesofteningdiagramassumesafundamentalroleInthedescriptionofthefractureprocessandIscharacterizedbythetensilestrength,fr,andthefractureenergy,Gr,whichIsgivenbytheareaunderthesofteningdiagram,seeFigure1b.Thecriticalcrackopening,ue,canbereplacedbytheductilityindexd,[4]givenastheratioGrlfr,whichrepresentsthefractureenergynormalizedbythetensilestrength.Thisparameterallowsthecharacterizationofthebrittlenessofthematerialandisdirectlyrelatedtotheshapeofthedescendingportionofthestress-deformationdiagram.

Thereareseveralexperimentalmethodsthathavebeenusedtomeasurethefractureproperties(tensilestrength,fractureenergyandductilityIndex)thatallowthedefinitionoftheconstitutivelawsofthematerial,namelydirecttensiletests,indirecttensiletestssuchasthethree-pointloadtest,andtheBraziliansplittingtest.Althoughtensilefailureresultsfromaloadcombinationandamultiplicity,offactors.meaningthatdirecttensionisnottheonlycauseoftensilecracking,adirecttensiletestseemstobethemoslappropriatetesttocharacterizethebasicfailuremechanism(modeI)ofquasi-brittlematerials.ThistestIsdefinedasthereferencemethodtofollow(5jbeingadoptedinthisworkfarthecharacterizationofthetensilebehaviourofbricks.

Differentissuesrelatedtothespecimensandthetestprocedureshavebeendiscussedinthepast,namelythetestingequipment,thecontrolmethod,thelocationoftheLinearVariableDisplacementTransducers(LVDTs),thealignmentofthespecimenand,especially,theattachmentofthespecimenstothesteelplatens.TherelevanceofthelatterIsaddressedInFigure2[6].ThebehaviourinFigure2a(rotatingplatensorhinges)Isjustifiedbytherotationofthespecimenduringtheloadingoperation,wherethecrackproceedsfromonesideofthespecimentotheotherside.InthecaseofFigure2busingfixed(non-rotating)platens,abendingmomentisintroducedandmultiplecrackswillappear.Thisresultsinaslightlylargertensilestrengthandahighervalueofenergydissipated(fractureenergy).Finally,ItisnotedthatalthoughthetensilestrengthandfractureenergyareconsideredIntrinsicpropertiesofthematerial,itIswellknownthatfracturepropertiesaresizeandscaledependent[6,7].

Tensilefractureparametersofmasonryconstituents,namelyunitsandthemortar-unitinterface,arekeyparametersforadvancednumericalmodellingofmasonryandforadeeperunderstandingofthebehaviourofmasonrystructures.inmepresentpaper,anexperimentalprogrammeusingthreetypesofclaybrickIsdiscussedwiththeobjectiveofincreasingthedataavailableintheliterature.

TESTSET-UPANDSPECIMENS

TensiletestswereperformedwithsolidbricksproducedbyValedaGandara,Portugal(S),hollowbricksproducedbyJ.MonteiroeFilhos,Portugal(HP),andhollowbricksproducedbySuceram,Spain(HS).Allbricksareextrudedandtheyweretestedinverticalorthickness(V)andinhorizontalorlength(H)directionresultinginsixserieswiththefollowingnotation:

SV,SH;HPV,HPH;HSV,HSH.Table1givesthedimensionsofthebricksandthefreewaterabsorption.Thenetcompressivestrengthofthebricks,alongtheextrusiondirectionwas78N/mm282N/mm2and58N/mm2,respectivelyforS.HPandHS.Hereitisnotedthatthesevaluesaremerelyindicative,asthefirsttwovalueswerefromindependenttestsbydifferentresearchersandinsufficientInformationaboutthetestingproceduresisavailable,see(8,9].Thethirdvalueofcompressivestrengthwasprovidedbythemanufacturer.

Itisnotedthat:

(a)bricksHPareextrudedwiththeholesparalleltothelargerdimensionandbricksHSareextrudedwiththeholesparalleltothesmallerdimension;(b)bricksHPandHShavesmallgroovesintheuppersurface(sideoppositetothefacingside)inordertoincreaseadhesionbetweentheunitandthebackingmortar,seeFlgure3.

Testingequipmentandappliedmeasuringdevices

ThetestswereperformedinthelaboratoryoftheCivilEngineeringDepartmentofUniversityofMinho,usingaCS7400-Sshearingtestingmachine.Thismachinehastwoindependenthydraulicactuators,positionedinverticalandhorizontaldirections.Ithasaloadcellconnectedtotheverticalactuatorwithamaximumcapacityof25kN,beingparticularlysuitedtosmallspecimens(maximumsizeof90x150x150mm).Theadoptionofaconstantcrosssectionforthespecimensleadstouncertaintyaboutthelocationofthemicro-cracks.Thisrepresentstheusualsupplementarydifficultyforthecontrolmethodofthistypeoftest.Sincethe

controlsystemallowsonlyoneLinearVariableDisplacementTransducer(LVDT)asdisplacementcontrol,itwasdecidedtointroduce,bymeansadiamondsawingmachine,two

lateralnotcheswithadepthof8mmandathicknessof3mmatmidheightofthespecimeninordertolocalizethefracturesurface.Withthenotches,thestressanddeformationdistributionisnolongeruniform,withstressandstraingradientsoccurringverylocalizednearthenotchtips.Sincethree-dimensionalnpn-uniformcrackopeningcanoccurontensiletests[10],thetensiletestcontrolusingtheaverageofthedeformationsregisteredonthefourcornersofthespecimenisthemostappropriateprocedure,seeFigure4.However,theavailableequipmentcanonlycontrolonedisplacementtransducer(LVDT),locatedatanotchedside.Thetransducershaveameasurebaseof1mmwithalinearityof0.17%ofthefullstroke.Adeformationrateof0.5um/swasusedinthetests.Theforceappliedwasmeasuredonaloadcellof25kNmaximumloadbearingcapacity,withanaccuracyof0.03%.

Afterpreparationofthespecimens'ends,glueadhesionconditionswereenhancedbymakingaseriesofsuperficialslotswithasaw.Then,thespecimenswerecarefullyfixedtothesteelplatensusinganepoxyresin(DEVCOM)insuchawaythattheplatenswerekeptperfectlyparallel.Here,ItIsnotedthatthesteelplatensarefixed(non-rotating),meaningthatloadeccentricityIsnotspecimens.Theonlysourceofanissueforpnsmadceccentricityisparallelismbetweenthesteelplatenswhichwethelackof,uldinduceabendingmomentInthespecimenintheclampingoperation.

Specimendimensions

Takingintoconsiderationthebrickdimensionsandthetestset-up,40x40x70mmSbrickspecimenswereextractedasshownInFigure5.HPandHSbricksarehollowand,therefore,thespecimensextractedfromthebricksmustberepresentativeofthebrickshell,achannelorUspecimens,andthebrickweb1specimens,seeFigure6.Here,itisnotedthattheusageofchannelspecimensinquestionablebecausealoadeccentricityisintroducedbythefactthetopandbottomflangesarefullygluedtothesteelspecimens.Nevertheless,becausetheendplatensarefullyfixed,theeccentricityisverylow.alinearelasticFEMcalculationIndicatesthatthenormalizedloadeccentricity(measuredbyeccentricity/webwidth)isonly0.03.

RESULTS

Fromtheforce-elongationrelationshipobtainedinthetensiletests,thefollowingparameterswereevaluated:

tensilestrength,fractureenergy,andresidualstressatultimatescanreading.ThenotchesreducetheYoung'smodulusofthebrick(Eb)byabout20%-40%[11].Asthemeasureof

Ebisquestionable,itisnotshownhere.

Figure7illustratestheprocedureadoptedforevaluatingthefractureenergy,G,.Inthecohesivecr

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1