恒压供水系统的PLC控制方案设计书.docx

上传人:b****8 文档编号:11110306 上传时间:2023-02-25 格式:DOCX 页数:34 大小:447.87KB
下载 相关 举报
恒压供水系统的PLC控制方案设计书.docx_第1页
第1页 / 共34页
恒压供水系统的PLC控制方案设计书.docx_第2页
第2页 / 共34页
恒压供水系统的PLC控制方案设计书.docx_第3页
第3页 / 共34页
恒压供水系统的PLC控制方案设计书.docx_第4页
第4页 / 共34页
恒压供水系统的PLC控制方案设计书.docx_第5页
第5页 / 共34页
点击查看更多>>
下载资源
资源描述

恒压供水系统的PLC控制方案设计书.docx

《恒压供水系统的PLC控制方案设计书.docx》由会员分享,可在线阅读,更多相关《恒压供水系统的PLC控制方案设计书.docx(34页珍藏版)》请在冰豆网上搜索。

恒压供水系统的PLC控制方案设计书.docx

恒压供水系统的PLC控制方案设计书

 

山东技师学院

毕业论文

题目

恒压供水系统的PLC控制设计

学生姓名

丁霄

学号

097610131

系部

电气工程系

专业

机电一体化

班级

技师机电091

指导教师

程厚强

二〇一一年十月

摘要

本文介绍了恒压供水的基本原理以及系统构成的基础,说明了可编程控制器(PLC)在恒压供水系统中所担任的角色。

从系统的整体设计方案和实际需求分析开始,紧密的联系实际生活的需要,力求做到使系统运行稳定,操作简便,解决实际中问题,保证供水安全、快捷、可靠。

恒压供水保证了供水质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性。

恒压供水系统已在国内许多实际的供水控制系统中得到应用,并取得稳定可靠的运行效果和良好的节能效果。

经实践证明该系统具有高度的可靠性和实时性,极大地提高了供水的质量,并且节省了人力,具有明显的经济效益和社会效益。

关键字:

PLC;恒压供水;变频器

第一章恒压供水原理及工艺

1.1任务

随着社会的发展和进步,城市高层建筑的供水问题日益突出。

以方便要求提高供水质量,不要因为压力的波动造成供水的障碍;另一方面要求保障供水的可靠性和安全性,在发生火灾时能可靠供水。

针对这两方面的要求,新的供水方式和控制系统应运而生,这就是PLC控制的恒压无塔供水系统。

恒压无塔供水系统包括生活用水的恒压控制和消防用水的恒压控制——即双恒压系统。

恒压供水保证了供水的质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性。

1.2工艺要求

对三泵生活/消防双恒压供水系统的基本要求是:

(1)生活供水时,系统应底恒压值运行,消防供水时系统应高恒压值运行;

(2)三台泵根据恒压的需要,采用“先开先停”的原则介入和退出;

(3)在用水量小的情况下,如果一台泵连续运行的时间超过3H,则要切换到下一台泵,即系统具有“倒泵功能”,避免某一台泵工作时间过长;

(4)三台泵在启动时要又软启动功能;

1.3系统的组成和基本工作原理

以一个三泵生活/消防双恒压无塔供水系统为例来说明其工艺过程,市网来水用高低水位控制器EQ来控制注水阀TV1,它们自动把水注满储水池,只要水位低于高水位,则自动往水箱中注水。

水池的高/低水位信号也直接送给PLC,作为底水位报警用。

为了保障供水的持续性,水位上下限传感器高低距离不是相差很大。

生活用水和消防用水共用三台泵,平时电磁阀YV2处于失电状态,关闭消防管网,三台泵根据生活用水的多少,按一定的控制逻辑运行,使生活用水的恒压状态(生活用水底恒压值)下进行;当有火灾发生时,电磁阀YV2得电,关闭生活用水管网,三台泵共消防用水使用,并根据用水量的大小,使消防供水也在恒压状态(消防用水高恒压值)下进行。

火灾结束后三台泵再改为生活供水使用。

第二章PLC概述

2.1PLC组成

2.1.1PLC的控制机制

PLC已经完全取代继电器控制系统。

只要对其控制机制有了准确的理解,才能对其持续的开发并创造性的使用它。

I/O电路已经保证了PLC与现场设备的直接连接,并在内部寄存器存储了这些状态。

但是,为了取代继电器的控制,更重要的是如何组织和使用这些开关量,从而达到软件程序代替硬件连线的目的。

在这里通过对继电器的控制的电路的特点的介绍,已经知道继电器控制电路的特点在于各个控制单元是否动作是由其接点条件控制的,并不受其前后位置的影响。

同一时刻,可有多个不同的控制单元继电器的动作(翻转),控制的结果、逻辑动作顺序也是由接点条件来控制的。

这于计算机顺序执行的工作的特点是矛盾的。

主要体现在:

一是乱序,只要条件满足就执行;而另一个是顺序执行。

PLC充分利用了计算机存储程序的思想和高速的特点,采用了控制系统中的离散控制方式,使它的控制能够完全代替继电器的控制。

具体的说就是将连续的控制用离散的控制代替,如下式:

Y(n)=f(x(n-1),y(n-1))

式中,Y(n)为某一时间段的输出值;

Y(n-1)为上一时间段的输出值;

X(n-1)为上一时间段某一时刻的输入值;

F为他们应满足的控制关系。

即某一时间段的输出完全取决于上一时间某一时刻的输入和上一时间段的输出。

至于上一时间段的输出,在参加计算的时候,只是存储在映像寄存器中的输出结果,执行运算过程中并不修改端子的输出值。

真实的输出已表现在端子的接点上,并要保持一个时间段,也就是采取集中输出的方式,在计算的过程中完全可以使用或修改其映像寄存器中的值而不会对先阶段的输出产生影响。

这样只要时间段足够短,并且PLC周而复始的运行着就完全可以模仿继电器的控制并且取代它。

由于采用集中I/O的思想,其I/O状态存储在寄存器中,可以充分发挥计算机的强大逻辑家能力,以完成更复杂的控制功能。

如图1所示,PLC与通用计算机没有什么区别,只是一台增强了I/O功能的可与控制对象方便连接的计算机。

其完成控制的实质是按一定算法进行I/O变换,并将这个变换物理实现,应用与工业现场。

(1)输入寄存器

输入寄存器可按为进行寻址,每一为对应一个开关量,其值反映了开关量的状态,其值的改变由相互如开关量驱动,并保持一个扫描周期。

CUP可以读其值,但是不可以写或进行修改。

(2)输出寄存器

输出寄存器的每一位都表明了PLC在下一个时间段的输出值,而程序循环执行开始时的输出寄存器的值,表明的是上一时间段的真实输出值,在程序执行过程中,CPU可以读其值,并作为条件参加控制,还可以修改其值,而中间的变换仅仅影响寄存器的值。

只有程序执行到一个循环的尾部时的值才影响下一时间段的输出,即只有最后的修改才对输出接点的真实值产生影响。

(3)存储器

存储器分为系统存储器和用户存储器。

系统存储器存储的是系统程序,它是由厂家开发固化好了的,用户不能修改,PLC要在系统程序的管理下运行。

用户存储器中存放的是用户程序和运行所需要的资源,I/O寄存器的值作为条件决定着存储器中的程序如何被执行,从而完成复杂的控制功能。

(4)CUP单元

CUP单元控制着I/O寄存器的读、写时序,以及对存储器单元中的程序的解释执行工作,是PLC的大脑。

(5)其他单元接口

其他单元接口用语提供PLC与其他设备和模块进行连接通信的物理条件

2.2PLC工作原理

2.2.1循环扫描

CUP连续执行用户程序、任务的循环序列称为扫描。

CUP的扫描周期包括读输入、执行程序、处理通讯请求、执行CUP自诊断测试及写输出等等内容。

PLC可被看成是在系统软件支持下的一种扫描设备。

他意识周而复始的循环扫描并执行由系统软件规定好的任务。

用户程序只是扫描周期的一个组成部分,用户程序不运行时,PLC也在扫描,只不过在一个周期中去除了用户程序和读输入、写输出这几部分的内容。

典型的PLC在一个周期中可以完成以下5个扫描过程。

(1)自诊断测试扫描过程。

为保证设备的可靠行,及时放映所出现的故障,PLC都具有自监视功能。

(2)与网络进行通讯的扫描过程。

一般小型系统没有这一扫描过程,配有网络的PLC系统才有通讯扫描过程,这一过程用于PLC之间及PLC与上位计算机或终端设备之间的通信。

(3)用户程序扫描过程。

机器处于正常运行状态下,每一个扫描周期内都包含该扫描过程。

该过程在机器运行中是否执行是可控的,即用户可以通过软件进行设定。

用户程序的长短会影响过程所用的时间。

(4)读输入、写输出扫描过程。

机器在正常运行状态下,每一个扫描周期都包含这个扫描过程。

该过程在机器运行中是否被执行是可控的。

CUP在处理用户程序时,使用的输入值不是直接从输入点读取的,运算的结果也不直接送到实际输出点,而是在内存中设置了两个映象寄存器:

一个为输入映象寄存器,另一个为输出映象寄存器。

用户程序所用的输入值是输入映象寄存器的值,运算结果也放在输出映像寄存器。

在输入扫描过程中,CUP把实际输入点的状态锁入到输入映像寄存器:

在输出扫描过程中CUP把输出映像寄存器的值的输出点。

循环扫描有如下特点:

(1)扫描周期周而复始地进行,读输入、输出和用户程序是否执行是可控的。

(2)输入映像寄存器的内容是由设备驱动的,在程序执行过程中的一个周期内输入映像寄存器的值保持不变,CUP采用集中输入的控制思想,只能使用输入映像寄存器的值来控制程序的执行。

(3)对同一个输出单元的多次使用、修改次序会造成不同的执行结果。

(4)各个电路和不同的扫描阶段会造成输入和输出的延迟,这是PLC的主要缺点。

在读输入阶段,CUP对各个输入端子进行扫描,通过输入电路将各输入点的状态锁入映象寄存器中。

紧接着转入用户程序执行阶段,CUP按照先左后右、先上后下的顺序对每条指令进行扫描,根据输入映象寄存器和输出映象寄存器的状态执行用户程序,同时将执行结果写入输出映象寄存器。

在程序执行期间,即使输入端子状态发生变化,输入状态寄存器的内容也不会改变——输入端子状态变化只能在下一个周期的输入阶段才被集中读入。

输入/输出采用映象寄存器的优点:

(1)集中采用I/O,程序扫描期间输入值固定不变,程序执行完后统一输出。

输出端子

图2—2PLC信号的传递过程

这种集中I/O的方式保证的程序的顺序执行与外部电路乱序执行的统一,使系统更加稳定可靠。

(2)程序执行时,存取映象寄存器要比读写I/O端点快的多,这样可以加快程序执行速度。

(3)I/O点必须按位存取,而映象寄存器可按位、字节、字、双字灵活的存取,增加了程序的灵活性。

2.2.2I/O响应时间

由于PLC采用循环扫描的工作方式,而且对输入和输出信号只在没个扫描周期的固定时间集中输入/输出,所以必然会产生输出信号相对输入信号滞后的现象。

扫描周期越长,滞后现象越严重。

响应时间有输入延迟、输出延迟和程序执行时间部分决定。

(1)PLC输入电路设置了滤波器,滤波器的常数越大,对输入信号的延迟作用越强。

输入延迟是由硬件决定的,有的PLC滤波器时间常数可调。

(2)从输出锁存器到输出端子所经历的时间称为输出延迟,对于不同的输出形式,其值大小不同。

它也是由硬件决定的,对于不同信号的PLC可以通过查表得到。

(3)程序执行时间主要由程序长短来决定,对于一个实际的控制程序,编程人员须对此进行现场测算,使PLC的响应时间控制在系统允许的范围内。

在最有利的情况下,输入状态经过一个扫描周期在输出得到响应的时间,称为最小I/O响应时间。

在最不利的情况下,输入点的状态恰好错过了输入的锁入时刻,造成在下一个输出锁定才能被响应,这就需要两个扫描周期时间,称为最大I/O响应时间。

它们是由PLC的扫描执行方式决定的,与编程方法无关。

2.2.3PLC中的存储器

PLC中的存储器按用途分为系统程序存储器、用户程序存储器以及工作数据存储器。

(1)系统程序存储器中存放的是厂家根据其选用的PLC的指令的系统编写的系统程序,它决定了PLC的功能,用户不能更改其内容。

(2)用户程序存储器用来存储根据控制要求而编制的用户应用程序。

(3)用来存储工作数据的区域称为工作数据区。

2.3PLC的编程语言

PLC的硬件系统中,与PLC的编程应用关系最直接的要算数据存储器。

计算机运行处理的是数据,数据存储在存储区中,找到待处理的数据一定要知道数据的存储地址。

PLC和其他的计算机一样,为了使用方便,数据存储器都作了分区,为了每个存储单元编排了地址,并且经机内系统程序为每个存储单元赋予了不同的功能,形成了专用的存储元件。

这就是前面提到过的编程的“软”元件。

为了理解方便,PLC的编程元件用“继电器”命名,认为它们象继电器一样具有线圈以及触点,并且线圈得电,触点动作。

当然这个线圈和触点只是假象,所谓线圈得电不过是存储单元置1,线圈失电,不过就是存储单元置0,也正因为如此,我们称之为“软”元件。

但是这种“软”继电器也有个突出的好处,可以认为它们具有无数多对动合动断触点,因此每取用一次它的触点,不过是读一次它的存储数据而已。

2.3.1PLC的编程结构功能图

任何语言都有编程的对象和基础,重要介绍梯形图语言和语句表语言,而功能图是理解这两种语言的基础。

如图3所示为PLC内部的结构功能示意图。

输入继电器是由外部输入驱动的,梯形图中只能使用其介入点状态值,用户不能改变输入继电器的状态。

辅助继电器的种类和多少决定了PLC控制功能的强弱,相当于工作寄存器的多少和功能的强弱。

实际的PLC中并没有图中的物理继电器,用继电器来表示PLC的内部功能结构是为了使习惯于继电器控制的工程技术人员更好的理解PLC的功能,更好的使用PLC,就像他在设计继电器控制电路一样。

梯形图语言是一种图形化的语言,是一种面向控制过程的“自然语言”。

梯形图编程语言形象、直观、准确的描述了逻辑控制关系,容易被广大的工程技术人员所掌握。

PLC与被控对象所连接的只是I/O条件,而I/O之间的组合控制关系需要用软件的方法来描述清楚,梯形图是一种描述方法,当然还有语句等表示其他的语言。

语言的支持取决于厂家开发的系统程序只要将其输入PLC的用户程序存储器中,PLC就能够直接解释并实现I/O间的控制关系。

当控制关系发生改变时,只要修改梯形图程序,重新输入到PLC的存储器即可,从而快捷的改变生产工

2.3.2梯形图编程语言

它们还是存在着本质上的区别,主要表现如下所述。

PLC是通过程序对系统进行控制的,作为一种专用计算机,为了适应其应用领域,一定有其专用的语言。

PLC的编程语言有多种,如梯形图、语句表、功能图、逻辑方程等。

梯形图编程语言是一种图形语言,具有继电器控制电路形象、直观的优点;语句表编程语言类似计算机的汇编语言,用助记符来表示各种指令的功能,是PLC用户程序的基础元素。

一般而言,梯形图程序让PLC仿真来自电源的电流通过一系列的输入逻辑条件,根据结果决定逻辑输出的允许条件。

逻辑通常被分解成小的容易理解的片,这些片通常被称为“梯级”或网络。

程序一次扫描执行一次网络,按照从做到右、从上到下的顺序进行。

一旦CUP执行到程序的结尾,就又从上到下执行程序。

在每一个网络中,指令以列为基础被执行,从上而下、从左到右依次执行,直到本网络的最后一个线圈列。

因此为了充分利用存储器容量,使扫描时间尽可能短,利用梯形图编程时应限制触点之间的距离,并使网络左上边这部分空白最少。

其中,串联触点较多的支路要写在上面,并联支路应写在左边,线圈放于触点的右边。

如图2-4所示是用PLC控制的梯形图程序,可完成与继电器控制的电动机直接起、停(起、保、停)继电器控制电路图相同的功能。

梯形图和继电器控制电路图很相似,这是可以用PLC控制取代继电器控制的基础,可以把经过实践证明设计是成功的继电器电路图进行转换,从而设计出具有相同功能的PLC控制程序,充分发挥PLC的功能完善、可靠性高、控制灵活的特点。

当然,它们还是存在着本质上的区别,主要表现如下所述。

按钮2的常闭触点

图2—3梯形图

(1)继电器控制电路中使用的继电器是物理的元器件,继电器与其他控制电器之间的连接必须通过硬件连接线来完成。

PLC中的继电器是内部的寄存器位,称为“软继电器”,它具有物理继电器相似的功能。

当它的“线圈”通电时,其所属的常开触点闭合,常闭触点断开;当它的线圈断电时,其所属的常开触点和常闭触点均恢复常态。

(2)PLC中的每一个继电器都对应着一个内部的寄存器,由于可以随时不受限地读取其内容,所以,可以认为PLC的继电器有无数个常开、常闭触点供用户使用。

PLC梯形图中的触点代表的是“逻辑”输入条件、外部的实际开关、按钮或内部的继电器触点条件等。

而物理继电器的触点个数是有限的。

(3)PLC的输入继电器是由外部信号驱动的,在梯形图中只能用其触点,这在物理继电器中是不可能的。

线圈通常代表“逻辑”输出结果,如灯、电机启动器、中间继电器、内部输出条件等。

(4)继电器控制系统中是按照触点的动作顺序和是延迟逐个动作的,动作顺序与电路图的编写顺序无关。

PLC按照扫描方式工作,首先采取输入信号,然后对所有梯形图进行计算,造成了宏观与动作顺序的无关,但是微观上在一个时间段上的是实际执行顺序与梯形图的编写顺序一致而不是无关的。

(5)PLC梯形图中的两根母线以失去原有的意义,它只表示一个梯形的起始和终了,并无实际电流通过,假象的概念电流只能从左向右流。

为了充分发挥CUP的逻辑运算功能,设置了大量的称为盒的附加命令,如定时器、计算器、格式转换、模拟量I/O、PID调节或数学运算指令等,充分的发挥了计算机的强大计算功能,他们与内部继电器一起完成PLC的各种控制功能。

第三章系统硬件设计

统、指令系统和编程方法以后,对于设计一个较大的PLC控制系统时,要全面考虑多种因素,不管所设计的控制系统的大小,一般都要用以下设计步骤来进行系统设计。

随着PLC功能的不断完善和提高,PLC几乎可以完成工业领域的所以控制任务。

但是PLC还是有最适合它的应用场合,所以接到一个控制任务以后,要分析被控对象的控制过程和要求,看看用什么控制设备来完成该任务最合适。

其实现在的可编程不仅处理开关量,而且对模拟量的处理能力也很强。

所以在很多情况下也可以取代工业控制计算机(IPC)作为主控器

控制对象以及控制装置确定后,还要进一步确定PLC的控制范围。

一般来说,能够反映生产过程的运行情况,能用传感器直接测量的参数,控制逻辑复杂的部分都由PLC控制来完成。

当某一个控制任务决定由PLC来完成后。

选择PLC就成为最重要的事情。

一方面是选择多大容量的PLC,另一方面是选择什么公司的PLC以及外设。

对第一个问题,首先要对控制任务进行详细的分析,把所有的I/O点找出来,包括开关量I/O模拟量I/O以及这些I/O点的性质。

I/O点是性质主要是指他们是直流信号还是交流信号,它们的电源电压。

控制系统输出点的类型非常关键,如果它们之中既有交流220V的接触器、电磁阀,又有直流24V的指示灯,则最后选用的PLC的输出点有可能大于实际点数。

因为PLC的输出点一般是几个一组共用一个公共端,这一组的输出只能有一个电源的种类和等级。

对于第二个问题,则有以下几个方面要考虑:

(1)功能方面所有PLC一般都具有常规的功能,但是对于某些特殊要求,就要知道所选用的PLC是否有能力完成控制任务。

如对PLC与PLC、PLC与智能仪表以及上位机之间灵活方便的通讯要求;或对PLC的计算速度、用户程序容量有特殊要求的;或对PLC的位置控制有特殊要求等。

这就要求用户对市场上流行的PLC品种有一个详细的了解,以便做出正确的选择。

(2)价格方面不同厂家的PLC产品价格相差很大,有些功能类似、质量相当、I/O点数相当的PLC的价格能相差40%以上。

在使用PLC较多的情况下,这样的差价必须是需要考虑的。

(3)个人喜好方面有些工程技术人员对某种品牌的PLC熟悉,所以一般比较喜欢使用这种产品。

系统调试分模拟调试和联机调试

硬件部分的模拟调试可在断开主电路的情况下,主要试一试手动控制部分是否正确。

软件部分的模拟调试可借助于模拟开关和PLC输出端的输出指示灯进行。

需要模拟量信号I/O时,可用电位器和万用表配合进行。

调试时。

可利用上诉外围设备模拟各种现场开关和传感器状态,然后观察PLC的输出逻辑是否正确。

如果有错误则修改后反复调试。

现在PLC的主流产品都可以在P机上编程,并可以在电脑上直接进行模拟调试。

联机调试时,可以把编制好的程序下载到现场的PLC中。

有时PLC也许只有这一台,这时就要把PLC安装到控制柜相应的位置上。

调试时一定要先将主电路断电,只对控制电路进行联调即可。

通过现场联调信号的接入常常还会发现软件以及硬件中的一些问题,有时厂家还需要对某些控制功能进行改进,这种情况下,都要经过反复测试系统后,才能最后交付使用。

产生水压的设备是水泵,水泵转动的越快,产生的水压就越高。

传统的维持水压的方法就是建造水塔,水泵开者时将水打到水塔中,水泵休息时借助水塔的水位继续供水。

水塔中的水位变化相对水塔的高度来说很小,也就是说水塔能够维持供水管路中水呀的基本恒定。

但是建造水塔需花费财力,水塔还会造成水的二次污染。

不用水塔,而要解决水压随用水量大小变化的问题。

通常的办法是:

用水量大时,增加水泵的数量或提高水泵的转动速度以保证管网中的水压不变,用水量小时又需作出相反的调节。

这就是恒压供水的基本思路。

这在电动机速度调节技术不发达的年代是不可设想的,但是今天办到这一点已经变的很容易了,交流变频的诞生为水泵转速的平滑连续调节提供了方便。

交流变频器是改变交流电源频率的电子设备,输入三相工频交流电后,可以输出频率平滑变化的三相交流电。

建造水塔需要花费财力,水塔还会造成水的二次污染。

那么可不可以不借助水塔来实现恒压供水?

答案是肯定的,但是要解决水压随用水量的大小变化的问题。

通常的办法是:

用水量大时,增加水泵的数量或提高水泵的转动速度以保持管网中水压的不变,用水量小时又需要做出相反的调节。

这就是恒压供水的基本思路,这在电动机速度调节技术不发达的年代是不可以想象的,但是在今天办到这一切已经边的很容易了。

3.1恒压供水系统的基本构成

恒压供水泵站一般需设多台水泵及电机,这比设单台水泵及电机节能而可靠。

配单台电机和水泵时,它们的功率必须足够的大,在用水量少十开一台大电机肯定是浪费,电机选小了用水量大时供水不足。

而且水泵和电机都有维修的时候,备用泵是必要的。

恒压供水的主要目标是保持管压网水呀的恒定,水泵电机的转速套跟随用水量的变化而变化,这就要用变频器为水泵供电。

这也有两种配置方式,一是为每台水泵电机配一台变频器,这当然方便,电机与变频器间不需要切换,但是购买变频器的费用较高。

另一种方案是数台电机陪一台变频器,变频器与电机见可以切换,供水运行时,一台水泵变频运行,其余水泵共频运行,以满足不同用水两的需求。

压力传感器

下图为恒压供水泵站的示意图。

如图3-1所示,图中压力传感器用于检测管网中的水压,常装设在泵站的出水口。

当用水量大时,水压降低;用水量小时,水压升高。

水压传感器将水压的变化转变为电流或电压的变化送给调节器。

图3—1变频恒压供水站的基本组成

调节器是一种电子装备,在系统中完成以下几种功能:

(1)设定水管压力的给定值,恒压供水水压的高低依需要设定。

供水距离越远,用水地点越高,系统所需供水压力越大。

给定值即是系统正常工作时的恒压值,另外有些供水系统可能有多种供水目的,如将生活用水与消防用水共用一个泵站,水压的设定值可能不只一个,一般消防用水的水压要高一些,调节器具有给定值设定功能,可以以数字量进行设定,也有的调节器以模拟量方式设定。

(2)接受传感器送来的管网水压的实测值。

管网实测水压回送到泵站控制装置称为反馈,调节器实反馈的接受点。

(3)根据给定值和实测值的综合,依一定的调节规律发出系统调节信号。

调节器接受了实测水压的反馈信号后,将它与给定值比较,得到给定值与实测值之差。

如果给定值大于实测值,说明系统水压低于理想水压,要加大水泵电机的转速,如果水压高于理想水压,要降低水泵电机的转速。

这些都是由调节器的输出信号控制。

为了实现调节的快速性与系统的稳定性,调节工作中还有个调节规律的问题,传统调节器的调节规律多是比例-积分-微分调节,俗称PID调节。

调节器的调节参数,如P、I、D参数均是可以由使用者设定的,PID调节过程视调节器的的内部构成由数字式调节及模拟量调节两类,以微型计算机调节器多为数字调节器。

调节器的输出信号一般式模拟信号,4~~20mA变化的电流信号或0~~10V间变化的电压信号。

信号的量值与前面提到的差值成正比,用于驱动执行设备工作。

下面以一个三泵生活/消防双恒压无塔供水系统为例来说明其工艺过程,如图3-2所示,市网来水用高低水位控制器EQ来控制注水阀TV1,它们自动把水注满储水池,只要水位低于高水位,则自动往水箱中注水。

水池的高/低水位信号也直接送给PLC,作

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 经济学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1