EXCEL回归分析结果的详细阐释.docx

上传人:b****7 文档编号:11003180 上传时间:2023-02-24 格式:DOCX 页数:11 大小:170.09KB
下载 相关 举报
EXCEL回归分析结果的详细阐释.docx_第1页
第1页 / 共11页
EXCEL回归分析结果的详细阐释.docx_第2页
第2页 / 共11页
EXCEL回归分析结果的详细阐释.docx_第3页
第3页 / 共11页
EXCEL回归分析结果的详细阐释.docx_第4页
第4页 / 共11页
EXCEL回归分析结果的详细阐释.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

EXCEL回归分析结果的详细阐释.docx

《EXCEL回归分析结果的详细阐释.docx》由会员分享,可在线阅读,更多相关《EXCEL回归分析结果的详细阐释.docx(11页珍藏版)》请在冰豆网上搜索。

EXCEL回归分析结果的详细阐释.docx

EXCEL回归分析结果的详细阐释

公司内部档案编码:

[OPPTR-OPPT28-OPPTL98-OPPNN08]

 

EXCEL回归分析结果的详细阐释

Excel回归分析结果的详细阐释

利用Excel的数据分析进行回归,可以得到一系列的统计参量。

下面以连续10年积雪深度和灌溉面积序列(图1)为例给予详细的说明。

图1连续10年的最大积雪深度与灌溉面积(1971-1980)

回归结果摘要(SummaryOutput)如下(图2):

图2利用数据分析工具得到的回归结果

第一部分:

回归统计表

这一部分给出了相关系数、测定系数、校正测定系数、标准误差和样本数目如下(表1):

表1回归统计表

逐行说明如下:

Multiple对应的数据是相关系数(correlationcoefficient),即R=。

RSquare对应的数值为测定系数(determinationcoefficient),或称拟合优度(goodnessoffit),它是相关系数的平方,即有R2==。

Adjusted对应的是校正测定系数(adjusteddeterminationcoefficient),计算公式为

式中n为样本数,m为变量数,R2为测定系数。

对于本例,n=10,m=1,R2=,代入上式得

标准误差(standarderror)对应的即所谓标准误差,计算公式为

这里SSe为剩余平方和,可以从下面的方差分析表中读出,即有SSe=,代入上式可得

最后一行的观测值对应的是样本数目,即有n=10。

第二部分,方差分析表

方差分析部分包括自由度、误差平方和、均方差、F值、P值等(表2)。

表2方差分析表(ANOVA)

逐列、分行说明如下:

第一列df对应的是自由度(degreeoffreedom),第一行是回归自由度dfr,等于变量数目,即dfr=m;第二行为残差自由度dfe,等于样本数目减去变量数目再减1,即有dfe=n-m-1;第三行为总自由度dft,等于样本数目减1,即有dft=n-1。

对于本例,m=1,n=10,因此,dfr=1,dfe=n-m-1=8,dft=n-1=9。

第二列SS对应的是误差平方和,或称变差。

第一行为回归平方和或称回归变差SSr,即有

它表征的是因变量的预测值对其平均值的总偏差。

第二行为剩余平方和(也称残差平方和)或称剩余变差SSe,即有

它表征的是因变量对其预测值的总偏差,这个数值越大,意味着拟合的效果越差。

上述的y的标准误差即由SSe给出。

第三行为总平方和或称总变差SSt,即有

它表示的是因变量对其平均值的总偏差。

容易验证+=,即有

而测定系数就是回归平方和在总平方和中所占的比重,即有

显然这个数值越大,拟合的效果也就越好。

第四列MS对应的是均方差,它是误差平方和除以相应的自由度得到的商。

第一行为回归均方差MSr,即有

第二行为剩余均方差MSe,即有

显然这个数值越小,拟合的效果也就越好。

第四列对应的是F值,用于线性关系的判定。

对于一元线性回归,F值的计算公式为

式中R2=,dfe=10-1-1=8,因此

第五列SignificanceF对应的是在显着性水平下的Fα临界值,其实等于P值,即弃真概率。

所谓“弃真概率”即模型为假的概率,显然1-P便是模型为真的概率。

可见,P值越小越好。

对于本例,P=<,故置信度达到%以上。

第三部分,回归参数表

回归参数表包括回归模型的截距、斜率及其有关的检验参数(表3)。

表3回归参数表

 

第一列Coefficients对应的模型的回归系数,包括截距a=和斜率b=,由此可以建立回归模型

第二列为回归系数的标准误差(用

表示),误差值越小,表明参数的精确度越高。

这个参数较少使用,只是在一些特别的场合出现。

例如L.Benguigui等人在Whenandwhereisacityfractal一文中将斜率对应的标准误差值作为分形演化的标准,建议采用作为分维判定的统计指标(参见EPB2000)。

不常使用标准误差的原因在于:

其统计信息已经包含在后述的t检验中。

第三列tStat对应的是统计量t值,用于对模型参数的检验,需要查表才能决定。

t值是回归系数与其标准误差的比值,即有

根据表3中的数据容易算出:

对于一元线性回归,t值可用相关系数或测定系数计算,公式如下

将R=、n=10、m=1代入上式得到

对于一元线性回归,F值与t值都与相关系数R等价,因此,相关系数检验就已包含了这部分信息。

但是,对于多元线性回归,t检验就不可缺省了。

第四列Pvalue对应的是参数的P值(双侧)。

当P<时,可以认为模型在α=的水平上显着,或者置信度达到95%;当P<时,可以认为模型在α=的水平上显着,或者置信度达到99%;当P<时,可以认为模型在α=的水平上显着,或者置信度达到%。

对于本例,P=<,故可认为在α=的水平上显着,或者置信度达到%。

P值检验与t值检验是等价的,但P值不用查表,显然要方便得多。

最后几列给出的回归系数以95%为置信区间的上限和下限。

可以看出,在α=的显着水平上,截距的变化上限和下限为和,即有

斜率的变化极限则为和,即有

第四部分,残差输出结果

这一部分为选择输出内容,如果在“回归”分析选项框中没有选中有关内容,则输出结果不会给出这部分结果。

残差输出中包括观测值序号(第一列,用i表示),因变量的预测值(第二列,用

表示),残差(residuals,第三列,用ei表示)以及标准残差(表4)。

表4残差输出结果

预测值是用回归模型

计算的结果,式中xi即原始数据的中的自变量。

从图1可见,x1=,代入上式,得

其余依此类推。

残差ei的计算公式为

从图1可见,y1=,代入上式,得到

其余依此类推。

标准残差即残差的数据标准化结果,借助均值命令average和标准差命令stdev容易验证,残差的算术平均值为0,标准差为。

利用求平均值命令standardize(残差的单元格范围,均值,标准差)立即算出表4中的结果。

当然,也可以利用数据标准化公式

逐一计算。

将残差平方再求和,便得到残差平方和即剩余平方和,即有

利用Excel的求平方和命令sumsq容易验证上述结果。

以最大积雪深度xi为自变量,以残差ei为因变量,作散点图,可得残差图(图3)。

残差点列的分布越是没有趋势(没有规则,即越是随机),回归的结果就越是可靠。

用最大积雪深度xi为自变量,用灌溉面积yi及其预测值

为因变量,作散点图,可得线性拟合图(图4)。

图3残差图

图4线性拟合图

第五部分,概率输出结果

在选项输出中,还有一个概率输出(ProbabilityOutput)表(表5)。

第一列是按等差数列设计的百分比排位,第二列则是原始数据因变量的自下而上排序(即从小到大)——选中图1中的第三列(C列)数据,用鼠标点击自下而上排序按钮

,立即得到表5中的第二列数值。

当然,也可以沿着主菜单的“数据(D)→

排序(S)”路径,打开数据排序选项框,进行数据排序。

用表5中的数据作散点图,可以得到Excel所谓的正态概率图(图5)。

表5概率输出表

图5正态概率图

【几点说明】

第一,多元线性回归与一元线性回归结果相似,只是变量数目m≠1,F值和t值等统计量与R值也不再等价,因而不能直接从相关系数计算出来。

第二,利用SPSS给出的结果与Excel也大同小异。

当然,SPSS可以给出更多的统计量,如DW值。

在表示方法上,SPSS也有一些不同,例如PValue(P值)用Sig.(显着性)表征,因为二者等价。

只要能够读懂Excel的回归摘要,就可以读懂SPSS回归输出结果的大部分内容。

更多相关资料,请参考

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经管营销 > 公共行政管理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1