飞思卡尔智能车传感器的排布.docx

上传人:b****8 文档编号:10948364 上传时间:2023-02-23 格式:DOCX 页数:9 大小:171.84KB
下载 相关 举报
飞思卡尔智能车传感器的排布.docx_第1页
第1页 / 共9页
飞思卡尔智能车传感器的排布.docx_第2页
第2页 / 共9页
飞思卡尔智能车传感器的排布.docx_第3页
第3页 / 共9页
飞思卡尔智能车传感器的排布.docx_第4页
第4页 / 共9页
飞思卡尔智能车传感器的排布.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

飞思卡尔智能车传感器的排布.docx

《飞思卡尔智能车传感器的排布.docx》由会员分享,可在线阅读,更多相关《飞思卡尔智能车传感器的排布.docx(9页珍藏版)》请在冰豆网上搜索。

飞思卡尔智能车传感器的排布.docx

飞思卡尔智能车传感器的排布

4.1光感器的路径精确识别技术

在智能车系统中,光电(激光)传感器就是整个系统的“眼睛”,其对于路径的识别在控制系统中尤为重要。

4.1.1光电传感器路径识别状态分析

由于往届竞赛对光电传感器排布方式研究已经比较深入,传统的“一”字型排布方式在众多排布方式中效果显著,是最常用的一种排布方式。

模型车也充分利用了往年的成熟的传感器技术,其排布方式如图5.1。

图4.1模型车激光传感器一字排布图

对于我们模型车,传感器在赛道上可能的状态有:

在普通的赛道处、在起点处、在十字交叉线处,分别如下图(并未列出所有的状态图),下面将分别进行分析。

图4.2激光传感器在普通赛道上

 

图4.3激光传器在起点处

图4.4激光传感器在十字交叉线处

为了识别赛车是处于什么样状态下,用于进行赛道记忆和速度控制,对于我们的数字型激光传感器,每个传感器只有0与1两种状态,我们分别把14路传感器标记为1到14号传感器,每个传感器又可以对应一个是否在黑线上的标志位,分别为

Sen_Flag[0]到Sen_Flag[13],相应在黑线上为1,不在黑线上为0,从而通过对任一时刻传感器标志位的读取就可以知道此时模型车的状态。

为了精确地识别起跑线和十字交叉线,在程序设计时还定义了一个名为Sen_ChangeCount的变量,表示传感器状态变化(由1变为0和由0变为1)的次数。

从上面的传感器状态图中可以轻松看出,在普通赛道上出除了赛车移出赛道之外传感器变化次数都为2次,而在起跑线处模型车的传感器状态变化次数为4次,在十字交叉线时传感器状态变化次数为0次。

为了进一步把各种状态分开,在程序中还定义了变量Sen_FlagCount,用于统计所有传感器状态标志位之和,即在黑线上的传感器的数目。

结合以上几个变量,就可以准确地分清各个传感器状态了。

各个传感器状态如下表:

表4.1传感器状态判定表

模型车状态

Sen_ChangeCount

Sen_FlagCount

起跑线处

4

>=8且<=11

十字交叉线处

0

=14

在普通赛道上

未移出黑线

2

>=1且<=3

在普通赛道上

移出黑线

0

0

通过上表,就可以轻松地把模型车任一时刻的传感器状态识别出来,也为赛道记忆识别起点等提供的必要的保障。

 

4.3.2双排排列与前瞻设计

红外传感器排列方式有多种:

(1)一字排列。

电路简单,算法相对也不复杂。

但是这种排列方法使智能车的前瞻性不远,导致智能车不能更快地发现前面的路况,不利于控制策略提早做出反应,影响其加速和减速。

(2)八字排列。

相对于一字排列前瞻性有一定提高,由于智能车是在控制电路作用下循线行使,所以前瞻性对于智能车的控制有很大影响。

(3)W字排列。

前瞻性和检测弯道能力均较好。

跑道有交叉,直道,弯道等多种形式,所以智能车过弯的平滑性和有效性将对智能车能否在更短时间顺利完成比赛有重要影响。

由于传感器我们使用的是模拟式识别方案,需对数据做归一化处理,若采用八字或W字型排列,各光电管不在同一直线上,就不能以相同的标准作归一化处理,这将大大增加数据处理的复杂性。

我们选择了13路传感器,分为两排,均采用“一字排列”的布局。

前排传感器位于智能车的最前方,由八个传感器对称排列,不均匀分布(如图4.5),具体间隔由测试决定,这排传感器完成前方赛道信息的检测,同时在安装上我们将其设计成抬起与地面形成一个夹角(如图4.5所示)这样小车前瞻距离提高到了d。

虽然探出距离与前瞻距离成正比,但是除比赛限制了车的长度外,同时由于红外传感器数目较多,再加上电路板的重量,将使智能车的重心前移,所以要选择适当的探出距离,具体距离需由测试决定,我们小车的前瞻有40cm。

图4.5前排传感器排列图

图4.6前排传感器安装示意图

而后排5个传感器主要用于对赛道始点进行识别,此内容将在软件部分详细说明。

 

 

3.3.1路径检测单元

在确定智能车总体方案时,本次选择光电传感器作为路径检测单元。

光电传感器检测路径的方案一般由多对红外收发管组成,通过检测接收到的反射光强,判断黑白线。

在这种方案中,一个红外对管只能检测一个点的信息,精度有限。

但其优点是电路简单,处理方便。

为了获得更大的前瞻距离,我们采用了可实现大前瞻激光传感器。

激光传感器与普通的光电传感器原理都是一样,但是其前瞻能力远大于普通的光电传感器,可以达到40-70cm。

应用大于60cm的远距离前瞻以后还有个问题是赛道中的大弯道无法通过,因为在过如180度的弯道时,远前瞻会全部看出跑道,检测不到任何赛道信息,因此还应用相同的技术制作了工作距离约为10cm的中距离前瞻。

本设计中使用了40cm的远前瞻和10cm的近前瞻。

我们使用的10cm近前瞻如图3-11所示:

图3-11近前瞻

 

第五章光电传感器的选择和设计排布

由于赛道具体信息还不知道,所以必须选择合适的路面信息检测传感器。

过查阅相关资料,了解到目前常用的寻线技术有:

光电寻线、磁诱导寻线和摄像

头寻线。

光电寻线一般由多对红外收发管组成,通过检测接收到的反射光强,判

断黑白线。

在这种方案中,一对收发管只能检测一个点的信息,精度有限。

但其

优点是电路简单,处理方便。

路面磁诱导与智能车辆的车载机器视觉诱导相比,

最大优点是完全不受光照变化的影响。

但这种方式必须以车道中心线上布设的带

有通过电流的漆包线作为车道参考标记,这违背了比赛规则。

摄像头寻线通过图

像采集,动态拾取路径信息,并对各种情况进行分析。

它具有信息量大,能耗低

的优点,但对数据的处理相对复杂。

作为第一次参加此次大赛的选手,并通过对

前几届届比赛的研究,我们决定还是从光电管入手。

普通的红外光电传感器检测路面信息的原理是由发射管发射一定波长的红

外线,经地面反射到接收管。

由于在黑色和白色上反射系数不同,在黑色上大部

分光线被吸收,而白色上可以反射回大部分光线,所以接收到的反射光强是不一

样,进而导致接收管的特性曲线发生变化程度不同,而从外部观测可以近似认为

接收管两端输出电阻不同,进而经分压后的电压就不一样,就可以将黑白路

面区分开来。

但是要提高速度并保证在入弯时不冲出赛道,就必须增加传感器的

“视野”,也就是智能车的前瞻,以便及时减速。

而一般的红外光电管所能提供

的前瞻就只有10-20cm,对于高速行驶的赛车前瞻太低。

所以通过比较,发现市

场上的激光管有比较好的性能,它可以照射很远的距离依然有很高的强度,根据

激光特性,除了激光的入射光和反射光是最强的以外,其他的所有散射光的强度

都是相同的,在此情况下,实际测量发现激光可以看到50cm以上的距离,对于

赛车的前瞻性大有好处,可以适当把光照调远,实现前瞻性循线控制。

由于选用激光作为传感器来识别路径,就可以不用像红外那样,传感器只能

离地面很近。

它可以架得高些,但是也要考虑整个车模的重心问题,把光点打的

很远,返回来的信号同样可以接收与识别路径。

我们试验过多种传感器布局架构

方案:

板子上用一排或两排激光管、赛道上打出一排或两排激光、传感器架在舵

机摆头或直接架在车模上不摆头。

经过试验论证,还是把传感器架在舵机上更有

优势。

它能根据黑线位置来调整自己的角度以保证时刻看到黑线,这样就可以保

证车模在不论是在直线还是在弯道的情况下都可以时刻的让传感器的中间几个

激光灯打在黑线上,从理论上讲就保证了赛车在弯道时的不丢线。

这样就可以把

光点聚的很窄,电路板也就可以做窄,从而简化了硬件电路。

至于电路板上排一排还是两排激光,这是各有利弊,排成一排更容易让光点

打成一条直线,更容易确定接收管的角度来对上光点,排两排可以把板子做的更

窄。

再考虑电路板上用的发射管个数,我们也进行过多种试验。

一般八个光点加

摆头就能顺利完成路径识别的任务。

但是,八个光点对于越来越复杂的路况还是

不够的,一般10个以上激光发射管加摆头就很好了。

由于激光管不能同时发射,

只能是单个循环发射,这样就需要选通电路,考虑要把这个电路板做小做轻,我

们把这部分电路放在了一体化的主板上,同时也把信号放大电路独立出去,最后

只剩下激光发射与接收管。

前文已经提过,我们不必要为每个发射管装一个接收

管,我们使用一个接收管对应三个发射管。

下面是我们的传感器布局的更进一步说明:

单排传感器(激光接收管)对应单排激光发射管,共5个接收管15个发射管。

发射管均匀分布,两两之间距离为1.0cm,接收管也是均有分布,间距为三个发

射管间距。

板子总长度16cm,下面留下一部分长度用作固定。

对于激光管的安

装,我们需要将激光电路板固定连接在随动舵机轮盘上,并保证连杆的竖直与激

光电路板的水平且左右对称。

连杆连接激光电路板与舵机轮盘,机械结构都用机

械制作。

选用质地轻,韧性小的材质,用铣床,线切割,钻床共同打造出来的。

激光电路版的俯角可以任意调节,以便可以在调试的时候做成可变化的前瞻。

时激光管上有聚焦透镜可以旋转拉远或拉近,以达到最理想的聚焦效果。

对于舵

机的固定,我们用固定在车模底盘上的四根同长的铜柱,加上相应的辅助机械结

构,牢牢的固定住舵机。

在安装过程中,舵机的高度,激光管的高度,激光管的俯角,整体的重量、

重心及其在车模上的位置等都是需要仔细考虑的因素。

由于赛道上设置坡道,我

们又在前排加了一排激光传感器,以达到在坡道中辅助循迹的作用。

具体的参数

为单排传感器(激光接收管)对应单排激光发射管,共4个接收管8个发射管。

发射管均匀分布,两两之间距离为1.5cm,接收管也是均有分布,间距为两个发

射管间距。

板子总长度16cm,下面留下一部分长度用作固定。

 

欢迎您的下载,资料仅供参考!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 职业规划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1