曲线沈建中.docx

上传人:b****8 文档编号:10869671 上传时间:2023-02-23 格式:DOCX 页数:38 大小:89.07KB
下载 相关 举报
曲线沈建中.docx_第1页
第1页 / 共38页
曲线沈建中.docx_第2页
第2页 / 共38页
曲线沈建中.docx_第3页
第3页 / 共38页
曲线沈建中.docx_第4页
第4页 / 共38页
曲线沈建中.docx_第5页
第5页 / 共38页
点击查看更多>>
下载资源
资源描述

曲线沈建中.docx

《曲线沈建中.docx》由会员分享,可在线阅读,更多相关《曲线沈建中.docx(38页珍藏版)》请在冰豆网上搜索。

曲线沈建中.docx

曲线沈建中

曲线拨道与整正

一、曲线整正基础知识

曲线轨道受力状态比直线复杂,变形也较快,容易造成曲线不圆顺。

因此对曲线方向要定期检查,当出现超过规定标准时,应及时进行整正,以保证行车安全和平稳。

线路方向整正分为量、算、拨三个步骤进行。

量是现场量取曲线上测点正矢;算是把现场量取测点正矢的数值,通过计算求得最佳的拨道量;拨是按照计算拨量数据进行现场拨道,使曲线恢复正确方向和位置。

这三个步骤是互相衔接、互相关联的,一个步骤发生了错误,都直接影响曲线整正的质量。

(一)、曲线正矢

1、曲线正矢的基本原理

曲线轨道的方向好坏,是以其圆顺度来表示的,而曲线圆度通常的表示方式是半径,要直接测出曲线各点的半径是有困难的。

但从数学上分析知道正矢与曲线半径有关,如下图中,ADBE是一个半径为R的圆,AB是长度C的一条弦线。

CD垂直于AB的半径,并在C点把AB平分为两个相等的部分。

CD叫弦长C的正矢,一般用符号f表示,在弦的其它各点至圆的垂直距离叫矢距。

正矢的大小与曲线半径大小及弦的长度

有关。

如果弦长一定时,曲线半径大的正矢小,

半径小的正矢反而大。

因此,曲线的圆顺度就

是根据这个原理用正矢来检查的。

这种采用固

定长弦线连续测量各点正矢的方法,叫绳正法,

是目前现场整正曲线常用的一种方法。

测量正矢一般用一根不易变形的20米的细

绳做为弦线,两端拉紧并贴靠在曲线外轨工作边

头部顶面下16㎜处,在弦线中间点用直钢尺准确

量出弦线至外轨内侧工作边的正矢数值,称为现场正矢。

2、曲线圆顺度标准

日常养护工作中,用以下三项来考量曲线圆顺度:

(1)圆曲线上各点正矢连续差;

(2)圆曲线上各点正矢最大最小值差;

(3)缓和曲线上各点正矢与计划正矢之差。

为保证行车安全,使曲线尽可能保持圆顺,《铁路线路修理规则》规定了曲线正矢作业验收容许偏差管理值和曲线正矢偏差经常保养管理值如下表:

曲线正矢作业验收容许偏差

曲线半径R

(m)

缓和曲线的正矢与

计算正矢差(mm)

圆曲线正矢

连续差(mm)

圆曲线正矢最大

最小值差(mm)

R≤250

6

12

18

250

5

10

15

350

4

8

12

450

3

6

9

R>800

Vmax≤120km/h

3

6

9

Vmax>120km/h

2

4

6

注:

曲线正矢用20m弦在钢轨踏面下16mm处测量。

曲线正矢经常保养容许偏差

曲线半径R

(m)

缓和曲线的正矢与

计算正矢差(mm)

圆曲线正矢连续差

(mm)

圆曲线正矢最大

最小值差(mm)

正线及

到发线

其他

站线

正线及

到发线

其他

站线

正线及

到发线

其他

站线

R≤250

7

8

14

16

21

24

250

6

7

12

14

18

21

350

5

6

10

12

15

18

450

4

5

8

10

12

15

R>800

3

4

6

8

9

12

注:

专用线按其他站线办理。

在复心曲线大小半径连接处现场正矢与计划正矢的允许差,按大半径曲线的缓和曲线规定办理,缓和曲线与直线连接处不得有反弯或“鹅头”。

注:

“鹅头”是指直缓点或缓直点前后,实际正矢与计划正矢之差连续3点超过3㎜及以上。

反弯是指直缓点或缓直点及其20m内的直线段有小于负2㎜的正矢,曲线段正矢有负负值。

列车由直线进入曲线或由曲线驶入直线,产生横向或竖向冲击,缓和曲线比圆曲线变形较快。

因此,针对该薄弱环节,当出现交替时,要用正矢差之差,对缓和曲线进行检算。

方法是:

以相邻测点各自的正矢差,取绝对值进行检算,同号相减,异号相加,得出差之差。

以300米半径的缓和曲线,举例说明如下:

缓和曲线正矢差之差计算

缓和曲线测点

1

2

3

4

5

6

7

8

计划正矢

4

24

48

72

96

120

144

163

现场正矢

4

30

54

66

102

114

150

163

正矢差

0

+6

+6

-6

+6

-6

+6

0

正矢差之差

6

0

12

12

12

12

6

在表中通过计算按照规定的标准,300米曲线半径时,对各测点的缓和曲线计划正矢与现场正矢相差6㎜(经常保养标准)是合格的,但从相连点连续考虑,对3、4、5、6、7测点,其正矢差出现正负交替,使相邻点的正矢差之差已达12㎜,产生曲线折角,列车在通过缓和曲线时摇晃加剧,所以,对缓和曲线的差之差超限也必须整正。

(二)整正曲线和外业工作

该项工作是为计划拨道做好准备和给今后检查曲线方向积累资料,因此,应认真做好以下各项工作。

1、拨正直线方向

这项工作十分重要,往往由于曲线两端直线方向不正,使拨后曲线生产“鹅头”,严重影响曲线拨道质量。

在测量正矢前,应将曲线两端直线方向拨正,消除反弯和“鹅头”。

同时,还要将曲线内个别超限较大的正矢,尤其对直缓、缓圆、圆缓、缓直等各点进行荒拨,使其各点正矢达到或接近规定的要求标准。

经过荒拨待曲线稳定后,复查复查拨后正矢,以便准确地进行整正计算。

状态较差的曲线要经过几次荒拨稳定后,才能进行正矢复查,整正计算。

2、排好正矢测点

先在曲线上找出中央点位置,如有资料或标记时,最好仍用原中央点位置。

如无资料可查或用原中央点计算拨道量太大时,则用实测正矢累计的合计,计算邮曲线中央点的位置。

然后从曲线中央点开始,分别向两端以10米弦,沿曲线上股丈量测点的距离,定好测点位置和编号,叫做“正弦”。

在两个正桩之间,每隔5米加一个副点,叫做“副桩”。

副桩只标记测点位置,不编测点号,以便在细拨曲线方向时用。

3、测量正矢

实测现场正矢是决定整正曲线方向的依据,现场正矢最好在没有风雨天气进行测量。

用弦绳测量时,拉绳用力要均匀一致,量取现场正矢要使眼、线、尺做到互相垂直,从弦线贴靠钢轨一侧,以毫米测得准确度。

各测点正矢应往返测量3次,取平均值。

在测量正矢的同时,还要丈量出直缓、缓圆、圆缓、缓直各点与前后两点的距离。

还要向两端直线段量出2~3个测点。

(三)整正曲线的基本原则

整正曲线时,必须遵守下列原则:

1、曲线两端直线方向应保持不变

为了避免拨动曲线时,造成曲线两端直线轨道大量移动,要求曲线在拨前和拨后,应保持两端直线所形成的交角不发生变化。

(1)整正前后的现场正矢总和必须等于计划正矢总和;

(2)最后一个测点差累计必须等于零。

2、曲线两端直线位置应保持不变

整正曲线前后正矢总和相等时,虽然能保持曲线两端直线方向不变,但并不能保证其直线不发生平行移动,因此整正曲线时除满足上述条件外,还要保证曲线始终点的拨量为零。

这是因为,轨道是的钢轨是连续连接的,曲线上任意一点拨动或变更正矢时,对相邻点的正矢都有影响,所以,曲线任意点拨动,其正矢部总和必须始终保持不变。

假如曲线始终点移动不为零,则切线也将移动,这样就涉及曲线的移动,因此,为使两端切线方向不变,必须使曲线上最后一个测点的拨量等于零。

3、在无缝线路上应尽量避免拨道量过大,否则,就会产生因轨枕和道床的相对位置,减少道床对轨枕的阻力。

另外,无缝线路没有轨缝,往上拨会增加钢轨的拉伸应力,往下压会增加钢轨的压缩应力。

为使应力不变,必须保证拨道量的正负值相等。

4、在有控制的曲线上,如信号机、桥隧、站台、房舍、道岔及电务设备等与限界有关的设备位置,以及线间距的要求位置,在计算拨量时,一般情况下庆保证控制点的拨道量为零,或控制在要求的数值内。

二、曲线正矢的计算

(一)圆曲线正矢的计算

1、圆曲线计划正矢的确定

(1)圆曲线计划正矢的计算公式:

f=C2/8R

式中:

f—圆曲线计划正矢;

C—弦绳长度;

R—曲线半径。

当弦绳C=20米时,f=50000/R

当弦绳C=10米时,f=12500/R

(2)如果只能测得圆曲线现场正矢,暂时不知道圆曲线半径时,可用下式计算:

f|C=∑fC/nC

式中:

∑fC—圆曲线部分各测点现场正矢总和;

f|C—圆曲线计划正矢;

nC—圆曲线测点数(不包括缓圆点和圆缓点)。

(3)如果两端设有缓和曲线相等的圆曲线,为了保持圆曲线两端直线方向不变,这样的圆曲线计划正矢为:

f|C=∑f|/(nC+n)

式中:

f|C—圆曲线计划正矢;

nC—圆曲线测点数(不包括缓圆点和圆缓点);

n—一侧缓和曲线测点数(包括缓圆、圆缓、直缓、缓直各点)。

例:

∑f|=1843,nC=3n=8

f|C=∑f|/(nC+n)=1843/(3+8)≈167

为便于计算起见,也可选择圆曲线中央部分现场正矢基本接近

某些测点(一般至少3个以上),将这些测点的现场正矢相加,然后,除以相应的测点数,求得该圆曲线的平均正矢。

即:

f|C=∑fC/n

2、圆曲线始终点正矢的确定

圆曲线两端直线与直线连接,在连接处的始点(直圆点)及终点(圆直点)的正矢比中间部分小,所以,可按以下整桩和零桩分别计算正矢。

(1)整桩

整桩是指测点正好在圆曲线始终点上

图中,O点为圆曲线始点(ZY),1、2为圆曲线的测点,f0与fC分别为O点及1点的正矢。

公式:

fO=1/2f|C

式中:

fO—圆曲线始终点的计划正矢,为圆曲线正矢的一半。

例:

曲线始终点正好在整桩上,头尾无鹅头,现场正矢的总和为320㎜,8个分段。

则:

f|C=∑fC/n=320/8=40㎜

fO=1/2f|C=20㎜

(2)零桩

零桩是指测点在圆曲线始终点附近时的正矢,

 

f1=y2f2=y2/2-y2

∵fC=C2/8R=l2/2R

将y的的比例数代入上式:

y2=y2l2/2R=r2fC

y3=(1+r)2l/2R=(1+r)2·fC

∴f1=r2/2·f=a1·fC

f2=(1+r)2/2·f-r2·fC=[(1+r)2/2-r2]f=a2·fC

式中;

R—圆曲线半径;

fC—圆曲线正矢;

l—弦长;

r—测点间的的比例数;

a—正矢系数。

为计算方便,将系数列表。

查表时需注意,甲总是靠直线一端的距离,乙总是靠近曲线方向的距离。

 

圆曲线始终点纵距率表

始终点位置

测点1及测点2的正矢系数

 

始终点位置

测点1及测点2的正矢系数

甲直

乙圆

测点1

测点2

 

甲直

乙圆

测点1

测点2

0.00

1.00

0.5000

1.0000

0.51

0.49

0.1201

0.8700

0.01

0.99

0.4901

1.0000

0.52

0.48

0.1152

0.8648

0.02

0.98

0.4802

0.9998

0.53

0.47

0.1105

0.8596

0.03

0.97

0.4705

0.9996

0.54

0.46

0.1058

0.8542

0.04

0.96

0.4608

0.9992

0.55

0.45

0.1013

0.8488

0.05

0.95

0.4513

0.9988

0.56

0.44

0.0968

0.8432

0.06

0.94

0.4418

0.9982

0.57

0.43

0.0925

0.8376

0.07

0.93

0.4325

0.9976

0.58

0.42

0.0882

0.8318

0.08

0.92

0.4232

0.9968

0.59

0.41

0.0841

0.8260

0.09

0.91

0.4141

0.9960

0.6

0.40

0.0800

0.8200

0.10

0.90

0.4050

0.9950

0.61

0.39

0.0761

0.8140

0.11

0.89

0.3961

0.9940

0.62

0.38

0.0722

0.8078

0.12

0.88

0.3872

0.9928

0.63

0.37

0.0685

0.8016

0.13

0.87

0.3785

0.9916

0.64

0.36

0.0648

0.7952

0.14

0.86

0.3698

0.9902

0.65

0.35

0.0613

0.7888

0.15

0.85

0.3613

0.9888

0.66

0.34

0.0578

0.7822

0.16

0.84

0.3528

0.9872

0.67

0.33

0.0545

0.7756

0.17

0.83

0.3445

0.9856

0.68

0.32

0.0512

0.7688

0.18

0.82

0.3362

0.9838

0.69

0.31

0.0481

0.7620

0.19

0.81

0.3281

0.9820

0.70

0.30

0.0450

0.7550

0.20

0.80

0.3200

0.9800

0.71

0.29

0.0421

0.7480

0.21

0.79

0.3121

0.9780

0.72

0.28

0.0392

0.7408

0.22

0.78

0.3042

0.9758

0.73

0.27

0.0365

0.7336

0.23

0.77

0.2965

0.9736

0.74

0.26

0.0338

0.7262

0.24

0.76

0.2888

0.9712

0.75

0.25

0.0313

0.7188

0.25

0.75

0.2813

0.9688

0.76

0.24

0.0288

0.7112

0.26

0.74

0.2738

0.9662

0.77

0.23

0.0265

0.7036

0.27

0.73

0.2665

0.9636

0.78

0.22

0.0242

0.6958

0.28

0.72

0.2592

0.9608

0.79

0.21

0.0221

0.6880

0.29

0.71

0.2521

0.9580

0.80

0.20

0.0200

0.6800

0.30

0.70

0.245

0.9550

0.81

0.19

0.0181

0.6720

0.31

0.69

0.2381

0.9520

0.82

0.18

0.0162

0.6638

0.32

0.68

0.2312

0.9488

0.83

0.17

0.0145

0.6556

0.33

0.67

0.2245

0.9456

0.84

0.16

0.0128

0.6472

0.34

0.66

0.2178

0.9422

0.85

0.15

0.0113

0.6388

0.35

0.65

0.2113

0.9388

0.86

0.14

0.0098

0.6302

0.36

0.64

0.2048

0.9352

0.87

0.13

0.0085

0.6216

0.37

0.63

0.1985

0.9316

0.88

0.12

0.0072

0.6128

0.38

0.62

0.1922

0.9278

0.89

0.11

0.0061

0.6040

0.39

0.61

0.1861

0.9240

0.90

0.10

0.0050

0.5950

0.40

0.60

0.18

0.9200

0.91

0.09

0.0041

0.5860

0.41

0.59

0.1741

0.9160

0.92

0.08

0.0032

0.5768

0.42

0.58

0.1682

0.9118

0.93

0.07

0.0025

0.5676

0.43

0.57

0.1625

0.9076

0.94

0.06

0.0018

0.5582

0.44

0.56

0.1568

0.9032

0.95

0.05

0.0013

0.5488

0.45

0.55

0.1513

0.8988

0.96

0.04

0.0008

0.5392

0.46

0.54

0.1458

0.8942

0.97

0.03

0.0005

0.5296

0.47

0.53

0.1405

0.8896

0.98

0.02

0.0002

0.5198

0.48

0.52

0.1352

0.8848

0.99

0.01

0.0001

0.5100

0.49

0.51

0.1301

0.8800

1.00

0.00

0.0000

0.5000

0.50

0.51

0.1250

0.8750

例:

圆曲线正矢fC=50㎜,圆曲线始点(ZY)距测点1=6m,测点2=4m,圆曲线终点(YZ)距测点20=1.5m,距测点21=8.5m,求测点2、3、20、21的正矢。

测点2、3的正矢,查表,当甲为6米的正矢系数为0.080乙为4米的正矢系数为0.820。

测点2的正矢=0.080×50=4㎜

测点3的正矢=0.820×50=41㎜

同理,查得甲为8.5米的正矢系数为0.011,乙为1.5米的正矢系数为0.639。

测点21的正矢=0.011×50≈1㎜

测点20的正矢=0.639×50≈32㎜。

(二)缓和曲线正矢的计算

缓和曲线的半径是由无限大逐渐变化为圆曲线半径相等。

由于缓和曲线半径是变化的,所以缓和曲线上各点正矢都不一样,其变化规律是由始点向圆曲线方向渐次增加一定的数值。

因此,缓和曲线的计划正矢,是利用半径与正矢的变化规律进行计算的。

1、测点在缓和曲线始终点上

(1)缓和曲线的始点正矢

 

缓和曲线始点(ZH、HZ)的正矢,为缓和曲线上始点正矢减递增率的1/6。

曲线递增率用fS表示,缓和曲线始点正矢为:

fS/6。

(2)缓和曲线中间各点正矢

缓和曲线的中间正矢的计算公式:

fS=f/n

缓和曲线始点后第一测点的正矢f1为缓和曲线正矢递增率,即

fS=f1=f/n

各点正矢为:

f1=fS,f2=2fS,f3=3fS,……

由上可见,缓和曲线正矢是按直线比例递增的,只要求得fS后,用测点号数乘以缓和曲线正矢递增率,即可算出缓和曲线中间的各点正矢。

(3)缓和曲线终点正矢

 

缓和曲线终点(HY、YH)在测点上的正矢,等于圆曲线正矢减去缓和曲线始点的正矢。

例:

圆曲线长为100米,缓和曲线测点分成5段(即缓和曲线长为50米),缓和曲线的各点正矢为:

缓和曲线正矢递增率fS=100/5=20㎜

f1=fS=20㎜,

f2=2×20=40㎜,

f3=3×20=60㎜

f4=4×20=80㎜

f0(缓和曲线始点)=20/6=3㎜,

f5(缓和曲线终点)=100-3=97㎜

2、测点不在缓和曲线始终点上

在实际工作中,圆曲线一般都不是10米的整倍数,因此,第二缓和曲线的始终点不可能正好在测点上。

这样,缓和曲线始终点两端相邻测点的计划正矢,要重新计算。

(1)缓和曲线始点

缓和曲线始点的直缓点不在测点上

图中,0、1、2为测点,λ为半弦长,ZH点为0和1。

测点0的计划正矢为fa,距直缓为A,测点1的计划正矢为fb,距ZH为B。

fa点计划正矢的计算方法:

fa=fS·1/6(B/λ)3=A距正矢系数×正矢递增率

fb点计划正矢的计算方法:

fb=fS·1/6[(1-B/λ)3—(B/λ)3]=B距正矢系数×正矢递增率。

(2)缓和曲线终点

缓和曲线终点的缓圆点不在测点上

fC点计划正矢的计算方法:

fC=f-fS·1/6(B/λ)3=圆曲线计划正矢-A距正矢系数×正矢递增率

fd点计划正矢的计算方法:

fd=f-fS·1/6[(1-B/λ)3—(B/λ)3]=圆曲线计划正矢-B距正矢系数×正矢递增率。

缓和曲线始终点纵距率表

始终点

位置

纵距率

 

 

始终点

位置

纵距率

 

 

始终点

位置

纵距率

A

B

测点A

测点B

A

B

测点A

测点B

A

B

测点A

测点B

D

C

测点D

测点C

D

C

测点D

测点C

D

C

测点D

测点C

0.00

1.00

0.1667

1.0000

0.34

0.66

0.0479

0.6665

0.68

0.32

0.0055

0.3274

0.01

0.99

0.1617

0.9900

0.35

0.65

0.0458

0.6571

0.69

0.31

0.0050

0.3648

0.02

0.98

0.1569

0.9800

0.36

0.64

0.0437

0.6478

0.70

0.30

0.0045

0.3572

0.03

0.97

0.1521

0.9700

0.37

0.63

0.0417

0.6384

0.71

0.29

0.0041

0.3497

0.04

0.96

0.1475

0.9600

0.38

0.62

0.0397

0.6291

0.72

0.28

0.0037

0.3422

0.05

0.95

0.1429

0.9500

0.39

0.61

0.0378

0.6199

0.73

0.27

0.0033

0.3348

0.06

0.94

0.1384

0.9400

0.40

0.60

0.0360

0.6107

0.74

0.26

0.0029

0.3275

0.07

0.93

0.1341

0.9301

0.41

0.59

0.0342

0.6015

0.75

0.25

0.0026

0.3203

0.08

0.92

0.1298

0.9201

0.42

0.58

0.0325

0.5923

0.76

0.24

0.0023

0.3132

0.09

0.91

0.1256

0.9101

0.43

0.57

0.0309

0.5833

0.77

0.23

0.0020

0.3061

0.10

0.90

0.1215

0

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 广告传媒

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1