高中物理知识点总结波的性质与波的图像波的现象与声波.docx
《高中物理知识点总结波的性质与波的图像波的现象与声波.docx》由会员分享,可在线阅读,更多相关《高中物理知识点总结波的性质与波的图像波的现象与声波.docx(13页珍藏版)》请在冰豆网上搜索。
高中物理知识点总结波的性质与波的图像波的现象与声波
一.教学容:
1.波的性质与波的图像
2.波的现象与声波
【要点扫描】
波的性质与波的图像
(一)机械波
1、定义:
机械振动在介质中传播就形成机械波.
2、产生条件:
(1)有做机械振动的物体作为波源.
(2)有能传播机械振动的介质.
3、分类:
①横波:
质点的振动方向与波的传播方向垂直.凸起部分叫波峰,凹下部分叫波谷
②纵波:
质点的振动方向与波的传播方向在一直线上.质点分布密的叫密部,疏的部分叫疏部,液体和气体不能传播横波。
4.机械波的传播过程
(1)机械波传播的是振动形式和能量.质点只在各自的平衡位置附近做振动,并不随波迁移.后一质点的振动总是落后于带动它的前一质点的振动。
(2)介质中各质点的振动周期和频率都与波源的振动周期和频率相同.
(3)由波源向远处的各质点都依次重复波源的振动.
(二)描述机械波的物理量
1.波长λ:
两个相邻的,在振动过程中相对平衡位置的位移总是相等的质点间的距离叫波长.在横波中,两个相邻的波峰或相邻的波谷之间的距离.在纵波中两相邻的密部(或疏部)中央间的距离,振动在一个周期在介质中传播的距离等于波长
2.周期与频率.波的频率由振源决定,在任何介质中传播波的频率不变。
波从一种介质进入另一种介质时,唯一不变的是频率(或周期),波速与波长都发生变化.
3.波速:
单位时间波向外传播的距离。
v=s/t=λ/T=λf,波速的大小由介质决定。
(三)说明:
①波的频率是介质中各质点的振动频率,质点的振动是一种受迫振动,驱动力来源于波源,所以波的频率由波源决定,是波源的频率.
波速是介质对波的传播速度.介质能传播波是因为介质中各质点间有弹力的作用,弹力越大,相互对运动的反应越灵敏,则对波的传播速度越大.通常情况下,固体对机械波的传播速度较大,气体对机械波的传播速度较小.对纵波和横波,质点间的相互作用的性质有区别,那么同一物质对纵波和对横波的传播速度不相同.所以,介质对波的传播速度由介质决定,与振动频率无关.
波长是质点完成一次全振动所传播的距离,所以波长的长度与波速v和周期T有关.即波长由波源和介质共同决定.
由以上分析知,波从一种介质进入另一种介质,频率不会发生变化,速度和波长将发生改变.
②振源的振动在介质中由近及远传播,离振源较远些的质点的振动要滞后一些,这样各质点的振动虽然频率相同,但步调不一致,离振源越远越滞后.沿波的传播方向上,离波源一个波长的质点的振动要滞后一个周期,相距一个波长的两质点振动步调是一致的.反之,相距1/2个波长的两质点的振动步调是相反的.所以与波源相距波长的整数倍的质点与波源的振动同步(同相振动);与波源相距为1/2波长的奇数倍的质点与波源的振动步调相反(反相振动.)
(四)波的图象
(1)波的图象
①坐标轴:
取质点平衡位置的连线作为x轴,表示质点分布的顺序;取过波源质点的振动方向作为y轴表示质点位移.
②意义:
在波的传播方向上,介质中质点在某一时刻相对各自平衡位置的位移.
③形状:
正弦(或余弦).
要画出波的图象通常需要知道波长λ、振幅A、波的传播方向(或波源的方位)、横轴上某质点在该时刻的振动状态(包括位移和振动方向)这四个要素.
(2)简谐波图象的应用
①从图象上直接读出波长和振幅.
②可确定任一质点在该时刻的位移.
③可确定任一质点在该时刻的加速度的方向.
④若已知波的传播方向,可确定各质点在该时刻的振动方向.若已知某质点的振动方向,可确定波的传播方向.
⑤若已知波的传播方向,可画出在Δt前后的波形.沿传播方向平移Δs=vΔt.
波的现象与声波
(一)波的现象
1.波的反射:
波遇到障碍物会返回来继续传播的现象.
(1)波面:
沿波传播方向的波峰(或波谷)在同一时刻构成的面.
(2)波线:
跟波面垂直的线,表示波的传播方向.
(3)入射波与反射波的方向关系.
①入射角:
入射波的波线与平面法线的夹角.
②反射角:
反射波的波线与平面法线的夹角.
③在波的反射中,反射角等于入射角;反射波的波长、频率和波速都跟入射波的相同.
(4)特例:
夏日轰鸣不绝的雷声;在空房子里说话会听到声音更响.
(5)人耳能区分相差0.1s以上的两个声音.
2.波的折射:
波从一种介质射入另一种介质时,传播方向发生改变的现象.
(1)波的折射中,波的频率不变,波速和波长都发生了改变.
(2)折射角:
折射波的波线与界面法线的夹角.
(3)入射角i与折射角r的关系
v1和v2是波在介质I和介质Ⅱ中的波速.i为I介质中的入射角,r为Ⅱ介质中的折射角.
3.波的衍射:
波可以绕过障碍物继续传播的现象.
衍射是波的特性,一切波都能发生衍射.
产生明显衍射现象的条件是:
障碍物或孔的尺寸比波长小或与波长相差不多。
例如:
“隔墙有耳”就是声波衍射的例证.
说明:
衍射是波特有的现象.
4.波的叠加与波的干涉
(1)波的叠加原理:
在两列波相遇的区域里,每个质点都将参与两列波引起的振动,其位移是两列波分别引起位移的矢量和.相遇后仍保持原来的运动状态.波在相遇区域里,互不干扰,有独立性.
(2)波的干涉:
①条件:
频率相同的两列同性质的波相遇.
②现象:
某些地方的振动加强,某些地方的振动减弱,并且加强和减弱的区域间隔出现,加强的地方始终加强,减弱的地方始终减弱,形成的图样是稳定的干涉图样.
说明:
①加强、减弱点的位移与振幅.
加强处和减弱处都是两列波引起的位移的矢量和,质点的位移都随时间变化,各质点仍围绕平衡位置振动,与振源振动周期相同.
加强处振幅大,等于两列波的振幅之和,即A=A1+A2,质点的振动能量大,并且始终最大.
减弱处振幅小,等于两列波的振幅之差,即A=ㄏA1-A2ㄏ,质点振动能量小,并且始终最小,若A1=A2,则减弱处不振动.
加强点的位移变化围:
-ㄏA1+A2ㄏ~ㄏA1+A2ㄏ
减弱点位移变化围:
-ㄏA1-A2ㄏ~ㄏA1-A2ㄏ
②干涉是波特有的现象.
③加强和减弱点的判断.
波峰与波峰(波谷与波谷)相遇处一定是加强的,并且用一条直线将以上加强点连接起来,这条直线上的点都是加强的;而波峰与波谷相遇处一定是减弱的,把以上减弱点用直线连接起来,直线上的点都是减弱的.加强点与减弱点之间各质点的振幅介于加强点与减弱点振幅之间.
当两相干波源振动步调相同时,到两波源的路程差Δs是波长整数倍处是加强区.而路程差是半波长奇数倍处是减弱区.
任何波相遇都能叠加,但两列频率不同的同性质波相遇不能产生干涉.
5.多普勒效应
(1)由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象.实质是:
波源的频率没有变化,而是观察者接收到的频率发生了变化.
(2)多普勒效应的产生原因
观察者接收到的频率等于观察者在单位时间接收到的完全波的个数.当波以速度v通过接收者时,时间t通过的完全波的个数为N=vt/λ,因而单位时间通过接收者的完全波的个数,即接收频率f=v/λ.
若波源不动,观察者朝向波源以速度v2运动,由于相对速度增大而使得单位时间通过观察者的完全波的个数增多,即<1261925824">,可见接收频率增大了.同理可知,当观察者背离波源运动时,接收频率将减小.
若观察者不动,波源朝向观察者以速度v1运动,由于波长变短为λ’=λ-v1T,而使得单位时间通过观察者的完全波的个数增多,即注:
发生多普勒效应时,波源的真实率不发生任何变化,只是观察者接收到的频率发生了变化.
(3)相对运动与频率的关系
①波源与观察者相对静止:
观察者接收到的频率等于波源的频率.
②波源与观察者相互接近:
观察者接收到的频率增大.
③波源与观察者相互远离:
观察者接收到的频率减小.
(二)声波
(1)空气中的声波是纵波.能在空气、液体、固体中传播.在通常情况下在空气中为340m/s,随介质、温度改变而变.
(2)人耳听到声波的频率围:
20Hz?
D20000Hz.
(3)能够把回声与原声区分开来的最小时间间隔为0.1s
(4)声波亦能发生反射、折射、干涉和衍射等现象.声波的共振现象称为声波的共鸣.
(5)次声波:
频率低于20Hz的声波.
(6)超声波:
频率高于20000Hz的声波.
应用:
声呐、探伤、打碎、粉碎、诊断等.
(7)声音的分类①乐音:
好听悦耳的声音.乐音的三要素:
音调(基音的频率的高低)、响度(声源的振幅大小)、音品(泛音的多少,由泛音的频率和振幅共同决定).声强:
单位时间通过垂直于声波传播方向单位面积的能量.②噪声:
嘈杂刺耳的声音,是妨碍人的正常生活和工作的声音.噪声已列为国际公害.
【规律方法】
波的性质与波的图像
(一)机械波的理解
【例1】地震震动以波的形式传播,地震波有纵波和横波之分。
(1)图中是某一地震波的传播图,其振幅为A,波长为λ,某一时刻某质点的坐标为(λ,0)经1/4周期该质点的坐标是多少?
该波是纵波还是横波?
A.纵波(5λ/4,0)B.横波(λ,-A)
C.纵波(λ,A)D.横波(5λ/4,A)
(2)若a、b两处与c地分别相距300km和200km。
当C处地下15km处发生地震,则
A.C处居民会感到先上下颠簸,后水平摇动B.地震波是横波
C.地震波传到a地时,方向均垂直地面D.a、b两处烈度可能不同
解析:
(1)由题图知,该地震波为横波,即传播方向与振动方向垂直。
某质点的坐标(λ,0)即为图中a点,经1/4周期,a点回到平衡位置下面的最大位移处,即位移大小等于振幅,坐标为(λ,-A),(水平方向质点并不随波逐流)。
故答案为B
(2)由于地震波有横波、纵波之分,二者同时发生,传播速度不同而异,传到a、b两处,由于距离,烈度也当然不同。
故答案为A、D。
(二)质点振动方向和波的传播方向的判定
(1)在波形图中,由波的传播方向确定媒质中某个质点(设为质点A)的振动方向(即振动时的速度方向):
逆着波的传播方向,在质点A的附近找一个相邻的质点B.若质点B的位置在质点A的负方向处,则A质点应向负方向运动,反之。
则向正方向运动,如图中所示,图中的质点A应向y轴的正方向运动(质点B先于质点A振动.A要跟随B振动).
(2)在波形图中.由质点的振动方向确定波的传播方向,若质点C是沿y轴负方向运动,在C质点位置的负方向附近找一相邻的质点D.若质点D在质点C位置x轴的正方向,则波由x轴的正方向向负方向传播:
反之.则向x轴的正方向传播.如图所示,这列波应向x轴的正方向传播(质点C要跟随先振动的质点D振动)
具体方法为:
①带动法:
根据波的形成,利用靠近波源的点带动它邻近的离波源稍远的点的道理,在被判定振动方向的点P附近(不超过λ/4)图象上靠近波源一方找另一点P/,若P/在P上方,则P/带动P向上运动,如图,若P/在P的下方,则P/带动P向下运动.
②上下坡法:
沿着波的传播方向走波形状“山路”,从“谷”到“峰”的上坡阶段上各点都是向下运动的,从“峰”到“谷”的下坡阶段上各点都是向上运动的,即“上坡下,下坡上”
③微平移法:
将波形沿波的传播方向做微小移动Δx=v?
Δt<λ/4,则可判定P点沿y方向的运动方向了.
反过来已知波形和波形上一点P的振动方向也可判定波的传播方向.
【例2】如图所示,a、b是一列横波上的两个质点,它们在x轴上的距离s=30m,波沿x轴正方向传播,当a振动到最高点时b恰好经过平衡位置,经过3s,波传播了30m,并且a经过平衡位置,b恰好到达最高点,那么
解析:
因波向外传播是匀速推进的,故v=ΔS/Δt=10m/s,设这列波的振动周期为T,由题意知经3s,a质点由波峰回到平衡位置,可得T/4十nT/2=3(n=1,2……)
另由v=λ/T得波长λ=点评:
本题在写出周期T的通式时即应用了“特殊点法”,对a质点,同波峰回到平衡位置需T/4时间,再经T/2又回到平衡位置……,这样即可写出T的通式.当然,若考虑质点b,也能写出这样的通式(同时须注意到开始时b恰好经过平衡位置,包括向上通过平衡位置和向下通过平衡位置这两种情况).
【例3】一列波在媒质中向某一方向传播,图所示的为此波在某一时刻的波形图,并且此时振动还只发生在M、N之间.此列波的周期为T,Q质点速度方向在波形图中是向下的,下列判断正确的是()
A.波源是M,由波源起振开始计时,P质点已经振动的时间为T;
B.波源是N,由波源起振开始计时,P点已经振动的时间为3T/4
C.波源是N,由波源起振开始计时,P点已经振动的时间为T/4。
D.波源是M,由波源起振开始计时,P点已经振动的时间为T/4
解析:
若波源是M,则由于Q点的速度方向向下,在Q点的下向找一相邻的质点,这样的质点在Q的右侧,说明了振动是由右向左传播,N点是波源,图示时刻的振动传到M点,P与M点相距λ/4,则P点已经振动了T/4.故C选项正确。
点评:
本题关键是由质点的运动方向确定波的传播方向,从而确定波源的位置.
(三)已知波速V和波形,画出再经Δt时间波形图的方法.
(1)平移法:
先算出经Δt时间波传播的距离上Δx=V?
Δt,再把波形沿波的传播方向平移动Δx即可.因为波动图象的重复性,若知波长λ,则波形平移nλ时波形不变,当Δx=nλ+x时,可采取去整nλ留零x的方法,只需平移x即可
(2)特殊点法:
(若知周期T则更简单)
在波形上找两特殊点,如过平衡位置的点和与它相邻的峰(谷)点,先确定这两点的振动方向,再看Δt=nT+t,由于经nT波形不变,所以也采取去整nT留零t的方法,分别作出两特殊点经t后的位置,然后按正弦规律画出新波形.
【例4】一列简谐横波向右传播,波速为v。
沿波传播方向上有相距为L的P、Q两质点,如图所示。
某时刻P、Q两质点都处于平衡位置,且P、Q间仅有一个波峰,经过时间t,Q质点第一次运动到波谷。
则t的可能值有()
A.1个B.2个C.3个D.4个
解析:
由题意:
“某时刻P、Q两质点都处于平衡位置,且P、Q间仅有一个波峰”,符合这一条件的波形图有4个,如图所示。
显然,Q质点第一次运动到波谷所需的时间t的可能值有4个。
故D选项正确。
【例5】一列简谐横波在传播方向上相距为3米的两个质点P和Q的振动图象分别用图中的实线和虚线表示,若P点离振源较Q点近,则该波的波长值可能为多少?
若Q点离振源较P点近,则该波的波长值又可能为多少?
分析:
由图可知,T=4s,P近,波由P向Q传,P先振动,Q后振动,Dt=kt+3T/4,所以,SPQ=kl+3l/4,则k=0,1,2L
若Q近,波由Q向P传,Q先振动,P后振动,Dt=kt+T/4,所以,SPQ=kl+l/4,则k=0,1,2L
波的现象与声波
【例1】一个波源在绳的左端发出半个波①,频率为f1,振幅为A1;同时另一个波源在绳的右端发出半个波②,频率为f2,振幅为A2,P为两波源的中点,由图可知,下述说法错误的是()
A.两列波同时到达两波源的中点P
B.两列波相遇时,P点波峰值可达A1+A2
C.两列波相遇后,各自仍保持原来的波形独立传播
D.两列波相遇时,绳上的波峰可达A1+A2的点只有一点,此点在P点的左侧
解析:
因两列波在同一介质(绳)中传播,所以波速相同,由图可知λ1>λ2,说明它们的波峰离P点距离不等,波同时传至P点,波峰不会同时到P点,所以P点波峰值小于A1+A2.两列波波峰能同时传到的点应在P点左侧,所以A,D正确,B错误,又由波具有独立性,互不干扰,所以C正确.答案:
B
【例2】两列振动情况完全相同的振源。
s1和s2在同一个介质中形成机械波。
某时刻两列波叠加的示意图如图所示,图中实线表示处于波峰的各质点,虚线表示处于波谷的各质点。
图中a、b、c三点中,振动情况加强的质点有,振动情况减弱的质点有。
解析:
在两列波叠加的区域,图中a点是实线与实线的交点,表明两列波都要求a点为正向位移,a点的位移是两列波位移的矢量之和,即振幅之和,是振动情况加强的质点。
同样处于虚线与虚线交点的b质点,也是振动情况加强的点。
只是b是处于反向最大位移(也等于两列波振幅之和)。
因此处于实线与虚线交点的质点c是振动情况减弱的质点,其此刻位移为零。
本题叠加的两列波是波长(频率)相同的两列波,满足干涉的条件。
过半个周期,图中实线变为虚线,虚线变为实线。
a、b仍是振动情况加强的点,c点仍是振动情况减弱的点。
即a、b以两列波振幅的和为振幅振动,c点则以它们振幅之差为振幅振动,且加强点与减弱点间隔排列。
【模拟试题
1.如图所示,
(1)为某一波在t=0时刻的波形图,
(2)为参与该波动的P点的振动图象,则下列判断正确的是
A.该列波的波速度为4m/s;
B.若P点的坐标为xp=2m,则该列波沿x轴正方向传播
C.该列波的频率可能为2Hz;
D.若P点的坐标为xp=4m,则该列波沿x轴负方向传播;
3.两列简谐波均沿x轴传播,传播速度的大小相等,其中一列沿x轴正方向传播,如图中实线所示。
一列波沿x轴负方向传播,如图中虚线所示。
这两列波的频率相等,振动方向均沿y轴,则图中x=1,2,3,4,5,6,7,8各点中振幅最大的是x=的点,振幅最小的是x=的点。
【试题答案
1.解析:
由波动图象和振动图象可知该列波的波长λ=4m,周期T=1.0s,所以波速v=λ/T=4m/s.
由P质点的振动图象说明在t=0后,P点是沿y轴的负方向运动:
若P点的坐标为xp=2m,则说明波是沿x轴负方向传播的;若P点的坐标为xp=4m,则说明波是沿x轴的正方向传播的.该列波周期由质点的振动图象被唯一地确定,频率也就唯一地被确定为f=l/t=0Hz.综上所述,只有A选项正确.
2.解析:
由两质点振动图象直接读出质点振动周期为4s.由于没有说明波的传播方向,本题就有两种可能性:
(1)波沿x轴的正方向传播.在t=0时,x1在正最大位移处,x2在平衡位置并向y轴的正方向运动,那么这两个质点间的相对位置就有如图所示的可能性,也就x2-x1=(n+1/4)λ,λ=400/(1+4n)cm
(2)波沿x轴负方向传播.在t=0时.x1在正最大位移处,x2在平衡位置并向y轴的正方向运动,那么这两个质点间的相对位置就有如图所示的可能性……,x2-x1=(n+3/4)λ,λ=400/(3+4n)cm
3.解析:
对于x=4、8的点,此时两列波引起的位移的矢量和为零,但两列波引起的振动速度的矢量和最大,故应是振动最强的点,即振幅最大的点。
对于x=2和6的点,此时两列波引起的位移矢量和为零,两列波引起的振动速度的矢量和也为零,故应是振动最弱的点,即振幅最小的点。
4.解析:
在x轴上任取点C,连接CA、CB.如图所示,由图可知CB-CA≤AB=3m(由三角形任意两边之差小于第三边原理得出左式),所以(CB-CA)的值可以取lm、2m、3m.而A、B两波源激起的水波波长为2m,则只有当(CB-CA)值为半波长的奇数倍时,两列波相遇才是减弱的,故取lm、3m时两列波叠加后是减弱的,由于是在x轴上从-∞到+∞围寻找,以及关于y轴对称的关系,故减弱点共有3个.