小学三年级数学巧面积公式.docx
《小学三年级数学巧面积公式.docx》由会员分享,可在线阅读,更多相关《小学三年级数学巧面积公式.docx(6页珍藏版)》请在冰豆网上搜索。
小学三年级数学巧面积公式
小学三年级数学巧面积公式
小学三年级巧求面积公式
关键词:
正方求出长方面积奥数正方形矩形长方形公式分割
摘 要:
《小学三年级奥数专题(二十七)巧用矩形面积公式》...,对左下图,我们无法直接求出它的面积,但是通过将它分割成几块,其中每一块都是正方形或长方形(见右下图),分别计算出各块面积再求和,就得出整个图形的面积。
例1右图中的每个数字分别表示所对应的线段的长度...
同学们都知道求正方形和长方形面积的公式:
正方形的面积=a×a(a为边长),
长方形的面积=a×b(a为长,b为宽)。
利用这两个公式可以计算出各种各样的直角多边形的面积。
例如,对左下图,我们无法直接求出它的面积,但是通过将它分割成几块,其中每一块都是正方形或长方形(见右下图),分别计算出各块面积再求和,就得出整个图形的面积。
例1右图中的每个数字分别表示所对应的线段的长度(单位:
米)。
这个图形的面积等于多少平方米?
分析与解:
将此图形分割成长方形有下面两种较简单的方法,图形都被分割成三个长方形。
根据这两种不同的分割方法,都可以计算出图形的的面积。
5×2+(5+3)×3+(5+3+4)×2=58(米2);
或
5×(2+3+2)+3×(2+3)+4×2=58(米2)。
上面的方法是通过将图形分割成若干个长方形,然后求图形面积的。
实际上,我们也可以将图形“添补”成一个大长方形(见下图),然后利用大长方形与两个小长方形的面积之差,求出图形的面积。
(5+3+4)×(2+3+2)-2×3-(2+3)×4=58(米2);
或
(5+3+4)×(2+3+2)-2×(3+4)-3×4=58(米2)。
由例1看出,计算直角多边形面积,主要是利用“分割”和“添补”的方法,将图形演变为多个长方形的和或差,然后计算出图形的面积。
其中“分割”是最基本、最常用的方法。
例2右图为一个长50米、宽25米的标准游泳池。
它的四周铺设了宽2米的白瓷地砖(阴影部分)。
求游泳池面积和地砖面积。
分析与解:
游泳池面积=50×25=1250(米2)。
求地砖面积时,我们可以将阴影部分分成四个长方形(见下图),从而可得白瓷地砖的面积为
(2+25+2)×2×2+50×2×2=316(米2);
或
(2+50+2)×2×2+25×2×2=316(米2)。
求地砖的面积,我们还可以通过“挖”的方法,即从大长方形内“挖掉”一个小长方形(见右图)。
从而可得白瓷地砖面积为
(50+2+2)×(25+2+2)-50×25
=316(米2)。
例3下图中有三个封闭图形,每个封闭图形均由边长为1厘米的小正方形组成。
试求各图形的面积。
解:
每个小方格的面积为1厘米2。
图
(1)可分成四个凸出块和一个中间块,这五块的面积都是2×2=4(厘米2)。
图
(1)的面积为
4×5=20(厘米2)。
图
(2)可以看成是从长7厘米、宽6厘米的长方形中,“挖掉”4个边长为2厘米的正方形。
它的面积等于
7×6-(2×2)×4=26(厘米2)。
图(3)像个宝鼎,竖行分割,从左至右分成五块,每块面积依次为2,5,3,5,2厘米2,总面积为
2+5+3+5+2=17(厘米2)。
例3中分割成正方形、长方形的方法很多,因而具体计算面积的方法也很多。
由于图形内所含方格数不多,所以也可以通过数图中小方格的数目来求得面积。
例4一个长方形的周长是22厘米。
如果它的长和宽都是整数厘米,那么这个长方形的面积(单位:
厘米2)有多少种可能值?
最大、最小各是多少?
解:
因为长方形的周长是22厘米,所以它的长、宽之和是22÷2=11(厘米)。
考虑到长、宽都是整数厘米,只有如下情形:
所以,这个长方形的面积有五种可能值:
10,18,24,28,30厘米2。
最大是30厘米2,最小是10厘米2。
练习27
1.甲、乙两块地都是长方形,且一样长。
(1)如果甲地面积是乙地面积的2倍,那么甲地的宽是乙地的宽的多少倍?
(2)如果甲地的宽是乙地的宽的3倍,那么甲地面积是乙地面积的多少倍?
分析与解:
游泳池面积=50×25=1250(米2)。
求地砖面积时,我们可以将阴影部分分成四个长方形(见下图),从而可得白瓷地砖的面积为
(2+25+2)×2×2+50×2×2=316(米2);
或(2+50+2)×2×2+25×2×2=316(米2)。
求地砖的面积,我们还可以通过“挖”的方法,即从大长方形内“挖掉”一个小长方形(见右图)。
从而可得白瓷地砖面积为
(50+2+2)×(25+2+2)-50×25
=316(米2)。
例3下图中有三个封闭图形,每个封闭图形均由边长为1厘米的小正方形组成。
试求各图形的面积。
解:
每个小方格的面积为1厘米2。
图
(1)可分成四个凸出块和一个中间块,这五块的面积都是2×2=4(厘米2)。
图
(1)的面积为
4×5=20(厘米2)。
图
(2)可以看成是从长7厘米、宽6厘米的长方形中,“挖掉”4个边长为2厘米的正方形。
它的面积等于
7×6-(2×2)×4=26(厘米2)。
图(3)像个宝鼎,竖行分割,从左至右分成五块,每块面积依次为2,5,3,5,2厘米2,总面积为
2+5+3+5+2=17(厘米2)。
例3中分割成正方形、长方形的方法很多,因而具体计算面积的方法也很多。
由于图形内所含方格数不多,所以也可以通过数图中小方格的数目来求得面积。
例4一个长方形的周长是22厘米。
如果它的长和宽都是整数厘米,那么这个长方形的面积(单位:
厘米2)有多少种可能值?
最大、最小各是多少?
解:
因为长方形的周长是22厘米,所以它的长、宽之和是22÷2=11(厘米)。
考虑到长、宽都是整数厘米,只有如下情形:
所以,这个长方形的面积有五种可能值:
10,18,24,28,30厘米2。
最大是30厘米2,最小是10厘米2。
练习27
1.甲、乙两块地都是长方形,且一样长。
(1)如果甲地面积是乙地面积的2倍,那么甲地的宽是乙地的宽的多少倍?
(2)如果甲地的宽是乙地的宽的3倍,那么甲地面积是乙地面积的多少倍?
[