信号完整性复习汇总.docx

上传人:b****1 文档编号:1071515 上传时间:2022-10-16 格式:DOCX 页数:24 大小:543.21KB
下载 相关 举报
信号完整性复习汇总.docx_第1页
第1页 / 共24页
信号完整性复习汇总.docx_第2页
第2页 / 共24页
信号完整性复习汇总.docx_第3页
第3页 / 共24页
信号完整性复习汇总.docx_第4页
第4页 / 共24页
信号完整性复习汇总.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

信号完整性复习汇总.docx

《信号完整性复习汇总.docx》由会员分享,可在线阅读,更多相关《信号完整性复习汇总.docx(24页珍藏版)》请在冰豆网上搜索。

信号完整性复习汇总.docx

信号完整性复习汇总

第一章概论

狭义的信号完整性(SI),是指信号电压(电流)完美的波形形状及质量。

广义的信号完整性(SI),指在高速产品中,由互连线引起的所有信号电压电平和电流不正常现象,包括:

噪声、干扰和时序等。

由于物理互连造成的干扰和噪声,使得连线上信号的波形外观变差,出现非正常形状的变形,称为信号完整性被破坏。

信号完整性问题是物理互连在高速情况下的直接结果。

信号完整性强调信号在电路中产生正确响应的能力。

信号无失真:

信号经过一个系统后,各个参数被等比例地放大或缩小。

高速的含义:

(严格地,高频不一定高速,低频也不一定低速)当系统中的数字信号的上升边小于1ns或时钟频率超过100MHz时,我们称之为高速运行。

物理互连的电阻、电容、电感和传输线效应影响了系统性能。

作者Eric将后果归结为四类SI问题:

反射(reflection);串扰(crosstalk);电源噪声(同步开关SSN、地弹、轨道塌陷);电磁干扰(EMI)。

反射(reflection)是指传输线上有回波。

信号功率(电压和电流)的一部分经传输线上传输到负载端,但是有一部分被反射回来形成振铃(ringing),振铃就是反复出现过冲和下冲。

(过冲是指第一个峰值或谷值超过设定电压;下冲类似)。

振铃现象实际上是由阻抗突变产生的反射引起的。

减小阻抗突变问题的方法就是让整个网络中的信号所感受的阻抗保持不变

当信号从驱动源输出时,构成信号的电流和电压将互连线看做一个阻抗网络。

当信号沿网络传播时,它不断感受到互连线引起的瞬态阻抗变化。

如果信号感受到的阻抗保持不变,则信号就保持不失真。

一旦阻抗发生变化,信号就会在变化处产生反射,并在通过互连线的剩余部分时发生失真。

如果阻抗改变的程度足够大,失真就会导致错误的触发。

串扰crosstalk)是指两个不同的电性能网络之间的相互作用。

通常,每一个网络既产生串扰,也会被干扰。

电源噪声主要指同步开关噪声(SSN)。

地弹是返回路径中两点之间的电压,它是由于回路中电流变化而产生的。

当流经接地回路电感上的电流发生变化时,在接地回路导线上产生的电压称之为地弹。

电源分布系统(PDS)中轨道塌陷,也是指地/电源网络中阻抗上的压降。

电磁干扰(EMI)是一个传输线(例如电缆、导线或封装的管脚)具有的天线特性结果。

它由电流中每个频率分量的辐射引起。

如果电流有理想方波的特性,则尽管各次谐波的幅度都以1/f的速率下降,但辐射能力仍会以速率f上升,所以各次谐波对EMI的影响都是相等的。

为了减少EMI,设计时应在所有信号中采用尽可能低的带宽。

(理由自述)

有损传输线引起数据完整性(DI)问题:

有损传输线引起上升边退化,从而引起符号间干扰或ISI,造成数据不完整问题。

频率大于1GHz时,介质损耗的增长与频率成正比,而导线损耗与频率的平方根成正比。

传输线的串联电阻随频率的平方根增加,介质内的并联交流漏电流也随频率线性增长。

信号完整性测量仪器分三类:

阻抗分析仪、矢量网络分析仪(VNA)、时域反射计(TDR)。

眼图是用示波器测量串行数据传送效果的有效手段。

互连线本质上就是传输线,一条为信号线,一条为返回线,返回线不能理解成地线。

阻抗是传输线上输入电压对输入电流的比率(Z0=V/I)

特性阻抗描述了信号在均匀传输线上遇到的恒定阻抗,它与单位长度的电容值和信号速度成反比

传输线(输入)阻抗指驱动器源端受到的阻抗,可能随传播时间而变。

信号出发时,源端感受到是线的阻抗。

随着终端匹配情况、线长和测量时刻不同,传输线的输入阻抗随之而

变。

传输线瞬态阻抗是信号传输途中随时遇到而感受到的先阻抗

互连线中的材料光速V为:

互连线单位长度的时延TDL为:

其中LL、CL分别为传输线单位长度的电感和电容值。

第2章

时域和频域

分析信号完整性分为时域和频域两种途径。

时域(timedomain)是对一个信号波形进行的示波器观察,它通常用于找出管脚到管脚的时延、错位、过冲、下冲以及建立时间。

频域(frequencydomain)是对一个信号波形进行的频谱分析仪观察,它通常用于波形与FCC以及其他EMI控制限制之间的比较。

(它能更快地解决问题)

傅里叶变换是将时域波形变换成由其正弦波频率分量组成的频谱。

上升时间与信号从低电平跳变到高电平所经历的时间有关,指信号从终值的10%跳变到90%所经历的时间。

下降时间通常要比上升时间短一些。

频域最重要的性质是:

他不是真实的,而是一个数学构造。

时域是唯一客观存在的域。

频域最重要的规则是:

正弦波是频域中唯一存在的波形。

在频域中,对波形的描述变为不同正弦波频率值的集合。

每一个频率分量都有相关的幅度和相位。

把所有这些频率值及其幅度值的集合称为波形的频谱。

频谱中的正弦波频率应是重复频率的整数倍。

若时钟频率为1GHz,则DFT就只能是1GHz、2GHz、3GHz……等的正弦波分量。

第一个正弦波频率称为一次谐波,以此类推。

频谱表示的是时域波形包含的所有正弦波频率的幅度。

若知道频谱,只需将每个频率分量变换成他的时域正弦波,再将其全部叠加即可,此过程是傅里叶逆变换。

(各次谐波叠加)

理想方波的频谱(对称的,占空比50%,峰值为1V):

正弦波频率分量及其幅度的集合称为频谱,每一分量称为谐波;零次谐波就是直流分量值;偶次谐波的幅度为0,奇次谐波的幅度都可由2/(nπ)计算得到。

(注意,幅度与频率的乘积为常数,即幅度与频率成反比)

理想方波的频谱幅度以速率1/f下降。

如果理想方波的电压幅度变为原来的2倍,那么各次谐波的幅度也变为2倍。

带宽用来表示频谱中有效的最高正弦波频率分量。

在近似时域波形过程中,所有高于带宽的频率分量都可以忽略不计。

带宽的选择对时域波形的最短上升时间有直接的影响。

波形的带宽值越大,10-90上升时间就越短。

对于方波而言,棱角越明显。

信号在有损传输线传输时,由于存在导体损耗和介质损耗,且他们对高频分量的衰减要大于对低频分量的衰减,这种选择性衰减使得在互连线中传播的信号的带宽降低。

如果两者在低频和高频的衰减一样,则远端的信号仅仅是信号幅度的减小,频谱模式不变,从而上升时间不变。

对所有信号而言,带宽与上升时间有倒数关系:

BW=0.35/RT(单位为GHz、ns)。

将信号的带宽定义为有效的最高正弦波频率分量。

把频域中更高的频率分量都去掉,从而最高有效分量就是频谱中的最高次谐波。

对于实际的时域波形,随着频率的升高,其谱分量的幅度总是比理想方波中相同频率的幅度下降的块。

对于信号而言,所谓的有效是基于信号的幅度与同频率理想方波的幅度相比较而言的。

若在某频率点分量的功率要小于理想方波中相应频率分量幅度功率的50%,也就是幅度下降至70%,则称之为有效。

对于上升时间有限的任何波形,有效指的是信号的谐波幅度高于相同频率的方波中相应谐波幅度的70%时的那一点。

时域波形的带宽,实际上是刚刚超过理想方波中相应谐波幅度70%的最高频率分量。

带宽这个概念本身就是一个近似,若波形的带宽是900MHz还是950MHz非常重要,就不能使用这个术语,而是应该看看完整的频谱图。

如果传输线电路的终端匹配欠佳,则信号就会发生振铃(振铃是由源端和远端的阻抗突变,两端之间不断的往复的多次反射引起的),频谱在振铃频率处产生峰值。

振铃频率的幅度会比没有振铃时信号的幅度高十倍以上。

有振铃时的带宽明显高于没有振铃时的带宽。

当波形中出现振铃时,其带宽约等于振铃频率。

EMI最严重的辐射源是共模电流,总辐射将随着频率而线性增加。

对于理想方波,各次谐波的幅度以1/f速率下降,但辐射能力则以f上升,所以各次谐波对EMI的影响大致相等。

为了减少EMI,设计目标就是在所有信号中采用尽可能低的带宽。

若有振铃,它使高频分量的幅度增加,并导致其辐射的幅度增加高达10倍。

这就是为什么为了减少EMI,通常要从解决信号完整性问题入手的一个原因。

带宽与时钟频率:

时钟频率并不能告诉我们带宽,上升时间才决定带宽。

譬如,对于频率均为1GHz的几个波形,只要他们的上升时间不同,带宽也就不同。

上升时间与时钟周期之间唯一的约束是:

上升时间一定小于周期的50%。

若不知道上升时间与周期的比值,一个合理的归纳为:

上升时间是时钟周期的7%。

用时钟频率代替时钟周期得到最终的关系式,即带宽是时钟频率的5倍。

(推导略)这只是一个近似,也就是说,时钟波形中的最高正弦波频率分量通常就是第五次谐波。

测量的带宽是指有足够精度的最高正弦波频率分量。

模型的带宽是指模型的预测值与互连线的实际性能能很好地吻合时的最高正弦波频率。

电容要在限定的频率内才表现为电容。

互连线的带宽指的是能被互连线传输且损耗不是很大时的最高正弦波频率分量。

或者,互连线的带宽指的是互连线能够传输的满足实际应用的性能指标的最高正弦波频率分量。

一般来说,在实际中我们使用的“有效”指标指的是传输的频率分量幅度减少了3dB,也就是说幅度减少为入射值的70%。

这就是经常提到的互连线的3dB带宽(指的是信号衰减小于-3dB时的正弦波频率)。

在频域中测量互连线的带宽是非常直截了当的。

网络分析仪产生不同频率的正弦波从互连线的前端进入,然后测出远端输出正弦波的大小。

它基本上测量的是互连线的传输函数,而互连线就相当于一个滤波器。

若互连线的3dB带宽为8GHz,那么如果输入一个8GHz的正弦波,远端得到的信号幅度至多为原信号幅度的70%。

互连线的带宽是对互连线所能传输的信号最短上升时间的直接度量。

如果互连线的带宽为1GHz,那么它所能传输的最快边沿就是350ps,这称为互连线的本征上升时间(与带宽等价)。

若一个理想方波经过互连线传输,那么传输后,信号的带宽就变为互连线的带宽,这时其上升时间称为互连线的本征上升时间。

输出后的上升时间可近似为:

RTout表示输出信号的10-90上升时间,RTinterconnect表示互连线的本征10-90上升时间。

要是互连线对信号上升时间造成的增量不超过10%,互连线的本征上升时间就要小于该信号上升时间的50%,这是个简单的经验法则。

从频域角度看,为了比较好地传输带宽为1GHz的信号,互连线的带宽应至少为该信号带宽的两倍,即2GHz。

第3章

阻抗和电气模型

高速数字系统中,常把信号称为变化的电压或变化的电流。

阻抗定义为电压与电流之比,这个定义始终正确,Z.V.I三个基本参量的相互影响决定了所有的信号完整性效应。

阻抗是描述互连线的所有重要电气特性的关键术语,知道了互连线的阻抗和传播时延也就知道了它几乎所有的电气特性。

不管是描述信号完整性相关问题,还是对其的解决方案和设计方法,都可用阻抗。

阻抗的定义(Z=V/I)适用于所有场合,单位都是欧姆,不论是在时域还是在频域中,也不管是测量实际器件还是计算理想器件。

阻抗描述了互连线或元件中电压和电流的关系。

从根本上说,它是器件两端的电压与流经器件的电流之比。

时域中理想电阻的阻抗:

Z=R(也就是说,理想电阻的阻抗是恒定的,与电流电压无关)

时域中理想电容的阻抗:

时域中理想电感的阻抗:

在时域中,电感和电容的阻抗都不是简单的函数,而且在时域中用阻抗来描述这些基本理想电路元件是一种非常复杂的方法。

它正确但却复杂。

故转到频域分析会简单得多。

频域中理想电阻的阻抗:

Z=R(在任何频率,理想电阻的阻抗都是相等的)

频域中理想电容的阻抗:

频域中理想电感的阻抗:

依据幅值|Z|=|V|/|I|,则:

电容器阻抗的复数形式:

Z=-i/wC。

幅值:

|Z|=1/wC,相位:

-i

电感器阻抗的复数形式:

Z=iwL。

幅值:

|Z|=wL,相位:

i

理想电阻的电阻值、理想电容的电容和理想电感器的电感都是不随频率变化的常数。

对于理想电阻,阻抗也是不随频率变化的常数。

然而,对于电感而言,阻抗随着频率的升高而减小,而电感的阻抗随着频率的升高而增大。

第四章电阻的物

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1