完整版平方差公式练习题精选含答案.docx

上传人:b****1 文档编号:1070188 上传时间:2022-10-16 格式:DOCX 页数:10 大小:48.91KB
下载 相关 举报
完整版平方差公式练习题精选含答案.docx_第1页
第1页 / 共10页
完整版平方差公式练习题精选含答案.docx_第2页
第2页 / 共10页
完整版平方差公式练习题精选含答案.docx_第3页
第3页 / 共10页
完整版平方差公式练习题精选含答案.docx_第4页
第4页 / 共10页
完整版平方差公式练习题精选含答案.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

完整版平方差公式练习题精选含答案.docx

《完整版平方差公式练习题精选含答案.docx》由会员分享,可在线阅读,更多相关《完整版平方差公式练习题精选含答案.docx(10页珍藏版)》请在冰豆网上搜索。

完整版平方差公式练习题精选含答案.docx

完整版平方差公式练习题精选含答案

1、利用平方差公式计算:

(1)(m+2)(m-2)

(2)(1+3a)(1-3a)

(3)(x+5y)(x-5y)

(4)(y+3z)(y-3z)

2、利用平方差公式计算

(1)(5+6x)(5-6x)

(2)(x-2y)(x+2y)

(3)(-m+n)(-m-n)

3利用平方差公式计算

(1)

(1)(-x-y)(-x+y)

(2)(ab+8)(ab-8)

(3)(m+n)(m-n)+3n2

4、利用平方差公式计算

(1)(a+2)(a-2)

(2)(3a+2b)(3a-2b)

(3)(-x+1)(-x-1)

(4)(-4k+3)(-4k-3)

 

5、利用平方差公式计算

(1)803×797

 

(2)398×402

 

7.下列多项式的乘法中,可以用平方差公式计算的是()

A.(a+b)(b+a)B.(-a+b)(a-b)

C.(a+b)(b-a)D.(a2-b)(b2+a)

8.下列计算中,错误的有()

①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y(x+y)=-x2-y2.

A.1个B.2个C.3个D.4个

9.若x2-y2=30,且x-y=-5,则x+y的值是()

A.5B.6C.-6D.-5

10.(-2x+y)(-2x-y)=______.

11.(-3x2+2y2)(______)=9x4-4y4.

12.(a+b-1)(a-b+1)=(_____)2-(_____)2.

13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.

14.计算:

(a+2)(a2+4)(a4+16)(a-2).

 

完全平方公式

1利用完全平方公式计算:

(1)(x+y)2

(2)(-2m+5n)2

 

(3)(2a+5b)2(4)(4p-2q)2

2利用完全平方公式计算:

(1)(x-y2)2

(2)(1.2m-3n)2

 

(3)(-a+5b)2(4)(-x-y)2

 

3

(1)(3x-2y)2+(3x+2y)2

(2)4(x-1)(x+1)-(2x+3)2

 

(3)(a+b)2-(a-b)2(4)(a+b-c)2

 

(5)(x-y+z)(x+y+z)(6)(mn-1)2—(mn-1)(mn+1)

 

4先化简,再求值:

(x+y)2——4xy,其中x=12,y=9。

 

5已知x≠0且x+=5,求的值.

 

平方差公式练习题精选(含答案)

一、基础训练

1.下列运算中,正确的是()

A.(a+3)(a-3)=a2-3B.(3b+2)(3b-2)=3b2-4

C.(3m-2n)(-2n-3m)=4n2-9m2D.(x+2)(x-3)=x2-6

2.在下列多项式的乘法中,可以用平方差公式计算的是()

A.(x+1)(1+x)B.(a+b)(b-a)

C.(-a+b)(a-b)D.(x2-y)(x+y2)

3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()

A.3B.6C.10D.9

4.若(x-5)2=x2+kx+25,则k=()

A.5B.-5C.10D.-10

5.9.8×10.2=________;6.a2+b2=(a+b)2+______=(a-b)2+________.

7.(x-y+z)(x+y+z)=________;8.(a+b+c)2=_______.

9.(x+3)2-(x-3)2=________.

10.

(1)(2a-3b)(2a+3b);

(2)(-p2+q)(-p2-q);

 

(3)(x-2y)2;(4)(-2x-y)2.

 

11.

(1)(2a-b)(2a+b)(4a2+b2);

 

(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).

12.有一块边长为m的正方形空地,想在中间位置修一条“十”字型小路,小路的宽为n,试求剩余的空地面积;用两种方法表示出来,比较这两种表示方法,验证了什么公式?

 

二、能力训练

13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()

A.4B.2C.-2D.±2

14.已知a+=3,则a2+,则a+的值是()

A.1B.7C.9D.11

15.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()

A.10B.9C.2D.1

16.│5x-2y│·│2y-5x│的结果是()

A.25x2-4y2B.25x2-20xy+4y2C.25x2+20xy+4y2D.-25x2+20xy-4y2

17.若a2+2a=1,则(a+1)2=_________.

三、综合训练

18.

(1)已知a+b=3,ab=2,求a2+b2;

 

(2)若已知a+b=10,a2+b2=4,ab的值呢?

 

19.解不等式(3x-4)2>(-4+3x)(3x+4).

 

参考答案

1.C点拨:

在运用平方差公式写结果时,要注意平方后作差,尤其当出现数与字母乘积的项,系数不要忘记平方;D项不具有平方差公式的结构,不能用平方差公式,而应是多项式乘多项式.

2.B点拨:

(a+b)(b-a)=(b+a)(b-a)=b2-a2.

3.C点拨:

利用平方差公式化简得10(n2-1),故能被10整除.

4.D点拨:

(x-5)2=x2-2x×5+25=x2-10x+25.

5.99.96点拨:

9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96.

6.(-2ab);2ab

7.x2+z2-y2+2xz

点拨:

把(x+z)作为整体,先利用平方差公式,然后运用完全平方公式.

8.a2+b2+c2+2ab+2ac+2bc

点拨:

把三项中的某两项看做一个整体,运用完全平方公式展开.

9.6x点拨:

把(x+3)和(x-3)分别看做两个整体,运用平方差公式(x+3)2-(x-3)2=(x+3+x-3)[x+3-(x-3)]=x·6=6x.

10.

(1)4a2-9b2;

(2)原式=(-p2)2-q2=p4-q2.

点拨:

在运用平方差公式时,要注意找准公式中的a,b.

(3)x4-4xy+4y2;

(4)解法一:

(-2x-y)2=(-2x)2+2·(-2x)·(-y)+(-y)2=4x2+2xy+y2.

解法二:

(-2x-y)2=(2x+y)2=4x2+2xy+y2.

点拨:

运用完全平方公式时,要注意中间项的符号.

11.

(1)原式=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.

点拨:

当出现三个或三个以上多项式相乘时,根据多项式的结构特征,先进行恰当的组合.

(2)原式=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]

=x2-(y-z)2-[x2-(y+z)2]

=x2-(y-z)2-x2+(y+z)2

=(y+z)2-(y-z)2

=(y+z+y-z)[y+z-(y-z)]

=2y·2z=4yz.

点拨:

此题若用多项式乘多项式法则,会出现18项,书写会非常繁琐,认真观察此式子的特点,恰当选择公式,会使计算过程简化.

12.解法一:

如图

(1),剩余部分面积=m2-mn-mn+n2=m2-2mn+n2.

解法二:

如图

(2),剩余部分面积=(m-n)2.

∴(m-n)2=m2-2mn+n2,此即完全平方公式.

点拨:

解法一:

是用边长为m的正方形面积减去两条小路的面积,注意两条小路有一个重合的边长为n的正方形.

解法二:

运用运动的方法把两条小路分别移到边缘,剩余面积即为边长为(m-n)的正方形面积.做此类题要注意数形结合.

13.D点拨:

x2+4x+k2=(x+2)2=x2+4x+4,所以k2=4,k取±2.

14.B点拨:

a2+=(a+)2-2=32-2=7.

15.A点拨:

(2a-b-c)2+(c-a)2=(a+a-b-c)2+(c-a)2=[(a-b)+(a-c)]2+(c-a)2=(2+1)2+(-1)2=9+1=10.

16.B点拨:

(5x-2y)与(2y-5x)互为相反数;│5x-2y│·│2y-5x│=(5x-2y)2=25x2-20xy+4y2.

17.2点拨:

(a+1)2=a2+2a+1,然后把a2+2a=1整体代入上式.

18.

(1)a2+b2=(a+b)2-2ab.

∵a+b=3,ab=2,

∴a2+b2=32-2×2=5.

(2)∵a+b=10,

∴(a+b)2=102,

a2+2ab+b2=100,∴2ab=100-(a2+b2).

又∵a2+b2=4,

∴2ab=100-4,

ab=48.

点拨:

上述两个小题都是利用完全平方公式(a+b)2=a2+2ab+b2中(a+)、ab、(a2+b2)三者之间的关系,只要已知其中两者利用整体代入的方法可求出第三者.

19.(3x-4)2>(-4+3x)(3x+4),

(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,

9x2-24x+16>9x2-16,

-24x>-32.

x<.

点拨:

先利用完全平方公式,平方差公式分别把不等式两边展开,然后移项,合并同类项,解一元一次不等式.

 

八年级数学上学期平方差公式同步检测练习题

1.(2004·青海)下列各式中,相等关系一定成立的是()

A.(x-y)2=(y-x)2B.(x+6)(x-6)=x2-6

C.(x+y)2=x2+y2D.6(x-2)+x(2-x)=(x-2)(x-6)

2.(2003·泰州)下列运算正确的是()

A.x2+x2=2x4B.a2·a3=a5

C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y2

3.(2003·河南)下列计算正确的是()

A.(-4x)·(2x2+3x-1)=-8x3-12x2-4x

B.(x+y)(x2+y2)=x3+y3

C.(-4a-1)(4a-1)=1-16a2

D.(x-2y)2=x2-2xy+4y2

4.(x+2)(x-2)(x2+4)的计算结果是()

A.x4+16B.-x4-16C.x4-16D.16-x4

5.19922-1991×1993的计算结果是()

A.1B.-1C.2D.-2

6.对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是()

A.4B.3C.5D.2

7.()(5a+1)=1-25a2,(2x-3)=4x2-9,(-2a2-5b)()=4a4-25b2

8.99×101=()()=.

9.(x-y+z)(-x+y+z)=[z+()][]=z2-()2.

10.多项式x2+kx+25是另一个多项式的平方,则k=.

11.(a+b)2=(a-b)2+,a2+b2=[(a+b)2+(a-b)2](),

a2+b2=(a+b)2+,a2+b2=(a-b)2+.

12.计算.

(1)(a+b)2-(a-b)2;

(2)(3x-4y)2-(3x+y)2;

(3)(2x+3y)2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 其它课程

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1