国际会议英文发言稿doc.docx

上传人:b****8 文档编号:10570932 上传时间:2023-02-21 格式:DOCX 页数:11 大小:23.23KB
下载 相关 举报
国际会议英文发言稿doc.docx_第1页
第1页 / 共11页
国际会议英文发言稿doc.docx_第2页
第2页 / 共11页
国际会议英文发言稿doc.docx_第3页
第3页 / 共11页
国际会议英文发言稿doc.docx_第4页
第4页 / 共11页
国际会议英文发言稿doc.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

国际会议英文发言稿doc.docx

《国际会议英文发言稿doc.docx》由会员分享,可在线阅读,更多相关《国际会议英文发言稿doc.docx(11页珍藏版)》请在冰豆网上搜索。

国际会议英文发言稿doc.docx

国际会议英文发言稿doc

国际会议英文发言稿

篇一:

英文国际学术会议揭幕词演讲稿

  Distinguishedguests,distinguisheddelegates,ladiesandgentlemen,andallthefriends:

  AtthisspecialtimeofwonderfulAugust,WithapleasantsubtropicalclimateinXiamen,Ourrespectableguestsareheregettingtogether,undertakenbyXMU,theXX10thInterna

tionalConferenceonNaturalComputationandtheXX11thInternationalConferenceonFuzzySystemsandKnowledgeDiscovery,willbeopen.Now,Firstofall,pleaseallowmetogiveourheartywelcometoallofyoupresent,andthankyou,foryourfriendlycoming.Wefeelsoproud,andappreciatedaswelltobethehostoftheevent.

  Itisagreathonorforustohaveallyouheretoattendthisconference,ofwhichthethemeistheacademicexchangeabouttheadvancedtechnologiesonComputerScience.HereI’dbedelightedtointroduceourconventioneersinbrief.Apartfromourfacultyandstudents,Mostofthedelegatesandguestsareprestigiousexpertsandscientists,whoarerelatedinthesefieldsfromallovertheworld.Withmanysignificantachievements,theyarethemostdynamicleadersinthemovementsofthescienceandtechnology.

  ICNC-FSKDisapremierinternationalforumforscientistsand

researcherstopresentthestateoftheartofdataminingandintelligentmethodsinspiredfromnature,particularlybiological,linguistic,andphysicalsystems,withapplicationstocomputers,circuits,systems,control,communications,andmore.Thisisanexcitingandemerginginterdisciplinaryareainwhichawiderangeoftheoryandmethodologiesarebeinginvestigatedanddevelopedtotacklecomplexandchallengingproblems.Asthehost,Iwouldliketotakethisopportunitytogiveyouageneralintroductionaboutourschool..

  XiamenUniversity(XMU),foundedin1921,isthefirstuniversityinChinafoundedbyoverseasChinese.Before1949,itwasnamedUniversityofAmoy.Theschoolmotto:

"PursueExcellence,StriveforPerfection(自强不息,止于至善)".Nowthisuniversityrankedthe13thinChina,whichisinthefrontrankinChinaandmaintainthetop20rankinginchina.ThisuniversityisoneofthecomprehensiveuniversitiesdirectlyaffiliatedwiththeEducationMinistry,islocatedinthecityofXiameninFujianProvince.In1995itwasincludedinthelistofthe“211Project”forthestatekeyconstruction;inXXitbecameoneofChina’shigher-leveluniversitiesdesignatedforthestatekeyconstructionofthe“985Project”.

  Forthisconference,wearefollowingtheagendahere.Themeetingissupposedtolastforthreedays,andtobeseparatedintotwoparts.Tobeginwith,we’llinvitesomerepresentatives

fromourgueststogivelecturesabouttheirlatestresearchesandreportsontheissue,andthenwewillhavesomesymposiums.Duringtheconferencewearepleasedtobeyourguidetothiscity.Ifanythingneeded,don’thesitatetocontactus.Webelievebyourcollaborationwearesuretomakethisgatheringaconsummation.

  AndfinallyIwishyouanunforgettableandprefectexperiencehere.

  Thanks!

篇二:

英文国际会议讲稿

  PPT

(1)

  大伙儿上午好!

今天我汇报的主题是:

基于改良型LBP算法的运动目标检测系统。

运动目标检测技术能降低视频监控的人力本钱,提高监控效率,同时也是运动目标提取、跟踪及识别算法的基础。

图像信号具有数据量大,实时性要求高等特点。

随着算法的复杂度和图像清楚度的提高,需要的处置速度也愈来愈高。

幸运的是,图像处置的固有特性是并行的,尤其是低层和中间层算法。

这一特性使这些算法,比较容易在FPGA等并行运算器件上实现,今天汇报的主题确实是关于改良型LBP算法在硬件上的实现。

  goodmorningeveryone.

  MyreportisaboutaMotionDetectionSystemBasedonImprovedLBPOperator.

  Automaticmotiondetectioncanreducethehumancostofvideosurveillanceandimproveefficiency[?

'f?

?

(?

)ns?

],itisalsothefundamentofobjectextraction,trackingandrecognition

  [rek?

g'n?

?

(?

)n].Inthiswork,efforts['ef?

ts]weremadetoestablishthebackgroundmodelwhichisresistancetothevariationofillumination.AndourvideosurveillancesystemwasrealizedonaFPGAbasedplatform.

  PPT

(2)

  目前,经常使用的运动目标检测算法有背景差分法、帧间差分法等。

帧间差分法的大体原理是将相邻两帧图像的对应像素点的灰度值进行减法运算,假设取得的差值的绝对值大于阈值,那么将该点判定为运动点。

可是帧间差分检测的结果往往是运动物体的轮廓,无法取得目标的完整形态。

  Currently,OpticFlow,BackgroundSubtractionandInter-framedifferenceareregardasthethreemainstreamalgorithmstodetectmovingobject.

  Inter-framedifferencebasedmethodneednotmodel['m?

dl]thebackground.Itdetectsmovingobjectsbasedontheframedifferencebetweentwocontinuousframes.Themethodiseasytobeimplementedandcanrealizereal-timedetection,butitcannotextractthefullshapeofthemovingobjects[6].

  PPT(3)

  在摄像头固定的情形下,背景差分法较为简单,且易于实现。

假设背景已知,并能提供完整的特点数据,该方式能较准确地检测出运动目标。

但在实际的应用中,准确的背景模型很难成立。

若是背景模型若是没有专门好地适应场景的转变,将大大阻碍目标检测结果的准确性。

像这副图中,背景模型没有及时更新,致使了检测的错误。

  Thebasicprincipleofbackgroundremovalmethodisbuilding

abackgroundmodelandprovidingaclassificationofthepixelsintoeitherforegroundorbackground[3-5].Inacomplexanddynamicenvironment,itisdifficulttobuildarobust[r?

(?

)'b?

st]backgroundmodel.

  PPT(4)

  上述的帧间差分法和背景差分法都是基于灰度的。

基于灰度的算法在光照条件改变的情形下,性能会大大地降低,乃至失去作用。

  Thealgorithmswehavediscussedaboveareallbasedongrayscale.Inpracticalapplicationsespeciallyoutdoorenvironment,thegrayscalesofeachpixelareunpredictablyshiftybecauseofthevariationsintheintensityandangleofillumination.

  PPT(5)

  为了解决光照改变带来的基于灰度的算法失效的问题,咱们考虑用纹理特点来检测运动目标。

而LBP算法是目前最经常使用的表征纹理特点的算法之一。

第一在图像中提取相邻9个像素点的灰度值。

然后对9个像素中除中心像素之外的其他8个像素做二值化处置。

大于

  等于中心点像素的,标记为1,小于的那么标记为0。

最后将中心像素点周围的标记值按统一的顺序排列,取得LBP值,图中计算出的LBP值为10001111。

当某区域内所有像素的灰度都同时增大或减小必然的数值时,该区域内的LBP值是可不能改变的,这确实是LBP对灰度的平移不变特性。

它能够专门好地解决灰度受光照阻碍的问题。

  Inordertosolvetheaboveproblems,weproposedanimprovedLBPalgorithmwhichisresistancetothevariationsof

illumination.

  Localbinarypattern(LBP)iswidelyusedinmachinevisionapplicationssuchasfacedetection,facerecognitionandmovingobjectdetection[9-11].LBPrepresentsarelativelysimpleyetpowerfultexturedescriptorwhichcandescribetherelationshipofapixelwithitsimmediateneighborhood.ThefundamentalofLBPoperatorisshowedinFig1.ThebasicversionofLBPproduces256texturepatternsbasedona9pixelsneighborhood.Theneighboringpixelissetto1or0accordingtothegrayscalevalueofthepixelislargerthanthevalueofcentricpixelornot.Forexample,inFig17islargerthan6,sothepixelinfirstrowfirstcolumnissetto1.Arrangingthe8binarynumbersincertainorder,wegetan8bitsbinarynumber,whichistheLBPpatternweneed.ForexampleinFig.1,theLBPis10001111.LBPistolerant['t?

l(?

)r(?

)nt]againstilluminationchanging.Whenthegrayscalesofpixelsina9pixelswindowareshiftedduetoilluminationchanging,theLBPvaluewillkeepunchanged.

  PPT(6)

  图中的一些常见的纹理,都能用一些简单的LBP向量表示,关于每一个像素快,只需要用一个8比特的LBP值来表示。

  Therearesometextures,andtheycanberepresentbysomesimple8bitLBPpatterns.PPT(7)

  从这幅图也能够看出,尽管灰度发生了专门大的转变,可是纹理特点并无改变,LBP值也没有转变。

  Youcansee,inthesepicture,althoughthegrayscalechangealot,buttheLBPpatternskeepitvalue.

  PPT(8)

  上述的算法是LBP算法的大体形式,可是这种大体算法不适合直接应用在视频监控系统中。

要紧有两个缘故:

第一,在经常使用的视频监控系统中,专门是在高清视频监控系统中,9个像素点覆盖的区域很小,在如此小的区域内,各个像素点的灰度值十分接近,乃至是相同的,纹理特点不明显,无法在LBP值上表现。

第二,由于以像素为单位计算LBP值,像素噪声会造成LBP值的噪声。

这两个缘故致使计算出的LBP值存在较大的随机性,乃至在静止的图像中,相邻两帧对应位置的LBP值也可能存在不同,从而引发的误检测。

  为了取得更好的检测性能,咱们采纳基于块均值的LBP算法。

这种方式的大体原理是先计算出3×3个像素组成的的像素块的灰度均值,以灰度均值作为该像素块的灰度值。

然后以3×3个像素块(即9×9个像素)为单位,计算LBP值。

  ThetypicalLBPcannotmeettheneedofpracticalapplicationofvideosurveillancefortworeasons:

Firstly,a“window”whichonlycontains9pixelsisasmallareainwhichthegrayscalesofpixelsaresimilarorsametoeachother,andthetexturefeatureinsuchasmallareaistooweaktobereflectedbyaLBP.Secondly,pixelnoisewillimmediatelycausethenoiseofLBP,whichmayleadtoalargenumberofwrongdetection.Inordertoobtainabetterperformance,weproposedanimprovedLBPbasedonthemeanvalueof“block”.Inouralgorithm,oneblockcontains9

pixels.ComparedwithoriginalLBPpatterncalculatedinalocal9neighborhoodbetweenpixels,theimprovedLBPoperatorisdefinedbycomparingthemeangrayscalevalueofcentralblock

  withthoseofitsneighborhoodblocks(seeFig.2).Byreplacingthegrayscalesofpixelswiththemeanvalueofblocks,theeffectofthepixelnoiseisreduced.ThetexturefeatureinsuchabiggerareaismoresignificanttobedescribedbyLBPpattern.

  PPT(9)

  运用LBP描述背景,其本质上也是背景差分法的一种。

背景差分法应用在复杂的视频监控场景中时,要解决成立健壮的背景模型的问题。

驶入并停泊在监控画面中的汽车,被搬移出监控画面的箱子等,都会造成背景的改变。

而正确的背景模型是正确检测出运动目标并提取完整目标轮廓的基础。

若是系统能按时更新背景模型,将已经移动出监控画面的物体“剔除”出背景模型,将进入监控画面而且稳固停留在画面中的物体“添加”入背景模型,会减少很多由于背景改变而造成的误检测。

  依照前一节的介绍,帧间差分法尽管无法提取完整的运动目标,可是它是一种不依托背景模型就能够进行运动目标检测的算法。

因此,能够利用帧间差分法作为当前监控画面中是不是有运动目标的依据。

若是画面中没有运动目标,就按期对背景模型进行更新。

若是画面中有运动目标,就推延更新背景模型。

如此就能够幸免把运动目标错误地“添加”到背景模型中。

Inpracticalapplication,thebackgroundischangingrandomly.Fortraditionalbackgroundsubtractionalgorithmtheincapabilityofupdatingbackgroundtimelywillcausewrongdetection.Inordertosolvethisproblem,weproposeanalgorithmwithdynamicself

updatingbackgroundmodel.Asweknow,Inter-framedifferencemethodcandetectmovingobjectwithoutabackgroundmodel,butthismethodcannotextractthefullshape.Backgroundsubtractionmethodcanextractthefullshapebutneedsabackgroundmodel.Thebasicprincipleofouralgorithmisrunningaframedifferencemovingobjectdetectionprocessconcurrently[k?

n'k?

r?

ntli]withthebackgroundsubtractionprocess.What’stimetoupdatethebackgroundisaccordingtotheresultofframedifferencedetection.

  PPT(10)

  运动目标检测系统专门是嵌入式运动目标检测系统在实际应用中要解决实时性的问题。

比如每秒60帧的1024×768的图像,对每一个像素都运用求均值,求LBP等算法,那么它的运算量是十分庞大的,为此咱们考虑在FPGA上用硬件的方式实现。

  IfLBPalgorithmisimplementedinasoftwareway,itwillbeveryslow.FPGAhavefeaturesofconcurrentcomputation,reconfigurationandlargedatathroughput.Itissuitabletobebuiltanembeddedsurveillancesystem.ThealgorithmintroducedaboveisimplementedonaFPGAboard.

  PP

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 自然景观

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1