PVDF膜材料表面的耐碱老化研究.docx

上传人:b****8 文档编号:10541953 上传时间:2023-02-21 格式:DOCX 页数:36 大小:669.59KB
下载 相关 举报
PVDF膜材料表面的耐碱老化研究.docx_第1页
第1页 / 共36页
PVDF膜材料表面的耐碱老化研究.docx_第2页
第2页 / 共36页
PVDF膜材料表面的耐碱老化研究.docx_第3页
第3页 / 共36页
PVDF膜材料表面的耐碱老化研究.docx_第4页
第4页 / 共36页
PVDF膜材料表面的耐碱老化研究.docx_第5页
第5页 / 共36页
点击查看更多>>
下载资源
资源描述

PVDF膜材料表面的耐碱老化研究.docx

《PVDF膜材料表面的耐碱老化研究.docx》由会员分享,可在线阅读,更多相关《PVDF膜材料表面的耐碱老化研究.docx(36页珍藏版)》请在冰豆网上搜索。

PVDF膜材料表面的耐碱老化研究.docx

PVDF膜材料表面的耐碱老化研究

PVDF膜材料表面的耐碱老化研究

摘要

聚偏氟乙烯是一种半结晶聚合物,具有较强的疏水性,能流延成膜,易受到有机物,

特别是蛋白质的吸附而造成膜污染。

针对膜污染,用较高浓度的NaOH碱液在高温下对膜

进行清洗。

但在清洗过程中,我们发现PVDF在碱液下逐渐变黄甚至发黑,PVDF的膜结构被破坏,减短了PVDF膜的使用寿命。

本实验正是基于此,采用改变PVDF表面结晶形态的方法对PVDF进行改性,从而提高其耐碱性。

PVDF常见的晶体结构主要有三种:

B、a丫晶型。

而溶剂和不同温度对膜结晶性能以及各种晶型的产生都有比较宏观的影响。

根据文献及前期摸索,实验主要从以下三方面进行:

成膜工艺、结晶形态、表面形貌结构对PVDF膜耐碱性的影响。

我们着重研究了PVDF膜材料在不同亲核试剂(氢氧根、乙胺)进攻下的脱氟降解过程,以及表面结构对此界面层脱氟降解反应的影响。

在相同的侵蚀环境下,PVDF溶剂膜脱氟降解速度和程度要远远高于PVDF熔融膜。

溶剂膜老化速度要快于熔融膜。

含a晶型较多的PVDF膜耐碱老化性能明显要强于含a晶型多的PVDF膜。

表面排布较规整的样品更耐碱老化。

关键词:

聚偏氟乙烯耐碱性结晶形态脱氟降解

AlkaliresistanceofPoly(vinylidenefluoride)film

Abstract

PVDFisasemi-crystallinepolymer,withstronghydrophobicity,castfilm,vulnerabletoorganiccompounds,especiallyproteinadsorptionandmembranefoulingcaused.Membranefouling,withahighconcentrationofNaOHalkalinesolutionunderhightemperatureonmembranecleaning.Butintheprocessofcleaning,wefindPVDFlyegraduallyturnyelloworevenblack,PVDFmembranestructuresaredestroyed,reducedtheuseofPVDFmembranelife.Thisexperimentisbasedonthis,usingthechangeofsurfacemorphologyofPVDFmethodstobemodified,therebyimprovingitsalkaliresistanee.

ButwithdifferentsolventsandtemperatureonpropertiesofmembranecrystallizationandCrystalhaveawiderimpact.Accordingtohistoricalandearlyexploring,theexperimentfromthefollowingthreemainareas:

filmformingprocess,Crystalmorphology,effectofsurfacemorphologystructureonalkaliresistaneeofPVDFmembrane.

WefocusonPVDFmembranematerialindifferentnucleophileshydroxyl,ethylaminedefluorinationprocessunderattack,andsurfacestructureonthedegradationeffectsoffluorinegas-fluidinterface.

Underthesameerosionenvironment,solventPVDFmembranedefluorinationdegradationlevelofspeedandmuchhigherthanthemeltingfilmofPVDF.Solventfilmagingfasterthanmeltingfilm.PVDFmembranecontainingaCrystalmoreagingpropertiesofalkali-resistantnoticeablystrongerthanacrystalofPVDFmembrane.Alkaliresistaneeofsurfacelayoutmorestructuredsamplesmoreaging.

Keywords:

poly(vinylidenefluoride);alkaliresistance;crystal;defluorinationofdegradation

摘要I•…

AbstractII

第一章文献综述1

1.1引言1…

1.2PVDF与碱的脱氟反应机理2.

1.2.1反应原理2.

1.2.2PVDF与碱反应的FT-IR表征3

1.2.3PVDF与碱反应的拉曼表征.4.

1.2.4ESR5..

1.3PVDF晶型结构.8..

1.3.1a晶型8..

1.3.2B晶型8..

1.3.3丫晶型9..

1.4实验方案与研究方向1.1

第二章实验样品制备部分12

2.1主要原料和仪器1.2

2.1.1实验原料与试剂1.2

2.1.2实验仪器与设备.12

2.2膜制备12

2.2.1熔融铸膜12

2.2.2溶剂铸膜13

第三章结果讨论14

3.1溶剂膜在氢氧根和乙胺进攻下的脱氟降解反应14

3.1.1通过△L值表征PVDF溶剂膜表面脱氟降解反应程度14

3.1.2FTIR-ATR分析1.6

3.2熔融膜在氢氧根和乙胺进攻下的脱氟降解反应17

321通过△L值表征熔融膜表面脱氟降解反应程度17

3.2.2FTIR-ATR分析1.8

3.3制备不同表面结构的PVDF材料19

3.3.1XRD分析20

3.4不同表面结构PVDF材料的脱氟降解反应21

实验结论24

参考文献25

致谢27

第一章文献综述

1.1引言

聚偏氟乙烯是一种半结晶、线型聚合物,玻璃化温度(Tg)为-39oC,结晶熔点(Tc)约等

于160°C,热分解温度在316oC⑴以上,聚合度可以达到几十万。

分子结构式为:

一CH2—

CF2—,其分子中C—F键具有很高的键能,C—F键的键能是485.7KJ/mol⑵,C—H键的键能是414.5KJ/mol,C—C键的键能是347.5KJ/mol,C—C键被外面的原子所包围,因此具有良好的化学稳定性、热稳定性、机械稳定性以及低介电常数、低表面能、耐射线,紫外线辐射等性质[3]。

用紫外灯照射一年,其性能基本不变,其薄膜置于室外一二十年也不会龟裂。

在室温下不受酸、碱以及强氧化剂和卤素的腐蚀,但在咼温咼浓度的碱液环境下耐碱性不强。

由于一CH2和一CF2键交替出现,分子链呈现强极性,可在较低的温度下溶于某些强极性的有机溶剂,易于用溶液相转化法制膜,是一种性能优良的新型聚合物膜材料。

近年来在膜分离技术中引起了人们很大的兴趣⑷。

Milipore公司在80年代中期最早开发出“purepore”型微孔滤膜,随后美国、日本等将膜组件应用于食品、医药和水处理等行业。

我国近几年研制出平板微孔膜、中空纤维微孔膜、平板超滤膜和中空纤维超滤膜,其中微滤膜由于具有良好的疏水性己成功地用于膜蒸馏、气体净化、有机溶剂精制等方面。

但是在生化制药、食品饮料及水净化等水相分离体系的应用领域,存在的突出问题就是的PVDF表面能极低(临界表面张力丫c=25mN/m,表面基团一CF2—的丫c=18mN/m,表面基团一CH2—的丫c=31mN/m),可润湿性很差,具有很强的疏水性,导致成膜后的水通量较低。

实验表明,在分离油水体系尤其是含蛋白质或活性生物体的溶液时,污染物易在膜表面和膜孔内吸附,使的膜通量随运行时间的延长而下降,导致分离性能下降,造成了膜的污染。

膜的清洗主要分为物理清洗和化学清洗。

物理清洗是利用高速的水或空气与水的混合流体冲刷膜表面,这种方法具有不引入新污染物、清洗步骤简单、对膜损伤小等特点,但该法只对污染初期的膜有效,清洗效果不能持久。

化学清洗是在水流中加入适合的化学药剂,连续循环清洗,该法能清除复合污垢,迅速恢复膜通量。

在实际运行中,对于污染严重的膜,仅靠物理清洗很难使膜通量完全恢复,必须借助化学清洗。

化学清洗剂的选择应根据污染物的类型和污染程度,以及膜的物理化学特性来进行,强碱主要清除油脂、蛋白、藻类等的生物污染、胶体污染及大多数的污染物,所以我们通常会采用NaOH的碱液

进行清洗[5]。

清洗的过程中,出现了一个比较严重的问题,在长期的浸泡中,PVDF膜开

始变黄甚至发黑,破坏了PVDF膜表面的结构,降低了膜的使用寿命,进而制约了其在膜分离领域的应用。

因此,本课题目的是确定影响PVDF耐碱性的主要因素,提高PVDF膜在高温高浓度碱液下的耐碱性,延长膜的使用寿命,使其能更好的运用在膜分离领域。

1.2PVDF与碱的脱氟反应机理

1.2.1反应原理

一般认为的碱降解机理的化学方程式:

—(CH2—CF2)—+XOH——(CH=CF)—+XF+H2O

X=LiorNa。

这一机理已经普遍的被接受了,并且通过几个实验小组的研究产生了一系列比较适中的实验数据。

而Brewis,Kise和Ogata却通过多烯链上氢氧化和羰基键的形成来扩大了这一机理。

下面是由Brewis等人所提出的机理是:

二皿?

FvCH=CF-CH—

OH

Kise和Ogatf描述了在相转移催化剂的催化作用下PVDF和氢氧化钠水溶液反应时的结构变化,他们发现生成了碳碳双键和三键。

Ross等[7]在XPS,ToF-SIMS,FT-IR和Raman

分析的基础上提出了一种PVDF在碱性溶液中的降解机理,如下所示[19]:

NaOH

1.2.2PVDF与碱反应的FT-IR表征

图1-1左是在0.07mol/L碱溶液中分别处理0,60,100min的PVDF膜红外谱图。

左图1-1a是PVDF原膜的FT-IR谱图,其中1404、1072和879cm-1是PVDF的特征吸收带。

将左图1-1b,1-1c和1-1a相比可以发现在1750~1500cm_1有一个宽峰,峰频率为1630cm-1该峰表明通过去氟化氢作用形成了碳碳双键⑹。

该峰的强度随着碱处理时间的增长而增强。

1

PVDF的特征谱带(1404,1072,879,838,763cm)几乎没有变化,该过程没有发生剧烈反应而破坏PVDF的骨架结构。

用不同浓度(0~0.18mol/L)KOH溶液处理PVDF膜的结构变化,处理时间均为100min右图1-1是该列膜的FT-IR谱图。

当浓度增加时,在1618cm'处的碳碳双键强度略有增加,这表明所形成的碳碳双键的量与KOH浓度也有关系。

图1-1左0.07mol/LKOH—乙醇溶液处理的PVDF膜红外光谱;右用(a)0;(b)0.1l;(C)0.18mol/LKOH

—乙醇溶液处理100min后的PVDF膜红外光谱图

1.2.3PVDF与碱反应的拉曼表征

将处理后膜的拉曼谱图(图1-2b~1-2e)与未处理的PVDF膜谱图(图1-2a进行比较,发现出现了两个新峰(1134和1530cm-1)。

它们是多烯的碳碳双键伸缩振动模式的特征峰[9],表明在该聚合物中形成了共轭的碳碳双键。

这两个峰的强度的增加经历了三个阶段。

在0

到40min反应时间里,这两个峰发生微小变化,只能观察到小突起,表明形成少量多烯结构。

在40到100min里,变化明显,形成多烯结构的速度加快。

从100到180min,两峰的

增长又变得平缓,即形成碳碳双键的反应速度降低。

同时观察到表示CH2弯曲振动的

2980cm-1和表示CH伸缩振动的1432cm-1也略有下降。

这表明在该处理过程中CH2发生了去质子化作用。

图1-3是不同碱浓度处理的PVDF膜的FT-Raman谱图。

在我们实验范围内,共轭碳碳双键两特征峰的强度随着浓度的增加而增加,尤其在浓度大于0.07mol/L时,增长更快。

这表明在该反应阶段(100min),碱浓度对反应速度影响明显。

OH-浓度越高,接近和进攻

PVDF的几率越大,从而加快了脱氟化氢反应速度。

根据Schaffer等给出的关系图[10],多烯的共轭链长度可以通过拉曼光谱中两个特征峰之间的距离估算。

两个特征峰之间的距离为397cm-1,估算可得多烯中碳碳双键的数目为

8~9。

该结果和Ross等报道的相一致。

如图1-2和图1-3所示,碳碳双键特征峰的位置几乎不变,两峰间距离也基本一样即。

反应时间和碱浓度对所形成的共轭链长度影响不大。

r7u3=0±写刁m

3500300015001000500

Wavenumbercm

图1-2用0.07mol/LKOH—乙醇溶液处理的PVDF膜拉曼光谱

r7u2L二uA-yH

图1-3:

用(a)0,(b)0.07,(C)0.1l,(d)0.18mol/LKOH一乙醇溶液处理100min后的PVDF膜拉曼光谱图

1.2.4ESR

图1-4和图1-5是碱处理PVDF样品的ESR谱图。

对于未经处理的样品,没有信号产生。

对于处理后的样品,产生一个峰宽约为1OGs的洛伦兹形单线信号。

总谱宽约45G&通过测定共振磁场和微波频率,可以得到g值为2.0031。

这些都说明在膜中形成了某种形式的自由基。

MagneiictkldyGs

图1-4用0.07mol/LKOH—乙醇溶液处理的PVDF膜ESR谱图处理时间(a)40;(b)80;(C)140min.未经过碱处理的PVDF膜不产生ESR信号。

测试频率:

9.765GHz;增益:

2.5沁05。

MacneticlkldGs

图1-5用(a)0,(b)0.07,(c)0.1l,(d)0.18mol/LKOH—乙醇溶液处理100min后的PVDF膜ESR谱图未经过

碱处理的PVDF膜不产生ESR信号。

测试频率:

9.765GHz;增益:

2.5X105。

为了确认这种自由基的类型,将结果与辐射PVDF膜的ESR谱图进行了比较。

Adem等[11]用ESR表征了受质子和电子辐射的PVDF,并将其谱图中5种峰与5种类型的自由基相联系。

它们分别是图1-6中的自由基1~5。

其中自由基5的寿命最长,峰宽4OGs,g=2.0000。

—CFj^CHj—CHj—CF^—CH?

—亡F~CH?

123

-cf2—CH-CF2——CH2^CF=CH^CF~CH2—

45

—CH^CF^CH^CFj一CHj—

6

图1-6PVDF膜中可能产生的自由基

Suryanarayan和Kevan[12]用总谱宽作为指认低辐射剂量辐射产生的烷基型自由基的主要标准。

他们测得的自由基1~4的总谱宽分别为260,300,420,170Gs。

Helbert等[13]研究了不同剂量的辐射对含氟聚合物的影响,并且证明了在高辐射剂量下含氟聚合物可形成多烯自由基,由30Gs的ESR单线信号表征。

在快速重离子辐射PVDF时也观察到多烯自由基信号,峰宽为5Gs,推测产生了一种乙烯基型c电子自由基。

当有足够能量辐射PVDF时,化学键断裂具有随意性,将形成多种类型的自由基。

但是在上述的碱溶液条件下,分子中可能只有一处键断裂,因而形成了一种自由基。

从获得谱图的总谱宽(45Gs)来看,可以基

本排除是自由基1~4(170~420Gs)的可能性。

而谱图的峰宽(10Gs)与文献中多烯自由基的峰宽(5~40Gs)相似,且考虑到在碱性条件下,更易失去氢原子,因此将其指认为自由基6(图

1-8)这些自由基可以在空气中暴露在光照下存在至少8h以上,而在空气中暴露12h以后即不

能检测到ESR信号。

如图1-4所示,随着碱处理时间的增长,谱峰强度也增大,即自由基浓度增大。

图1-7是自由基浓度随碱处理时间的关系图,为S型曲线,即在碱处理时间低于40min时,自由基形成速度缓慢,从40到100min加快,2h以后,自由基的产生就达到了饱和。

这与共轭双键的变化规律相同(见FT-Ramar部分)。

图1-5、图1-7显示了形成的自由基浓度随处理的碱浓度变化的关系图(处理时间100min)。

当碱浓度在0.11mol/L之前,自由基浓度随碱浓度的增大而增大,在此之后,自由基浓度随碱浓度增大而减小,这与共轭碳碳双键的变化趋势不同。

Alkalineconcc?

ntratiotV(molL'1)

0.00().040.080.120.16020

8.0-1

7.0

6.0t

5.0

4.0

3.0-

2.0-

LO-

0.0FIFIITIFI■I1*'IF<■

020406080100120140160180200

A1LnIinpirpittincrtirrv/min

图1-7碱处理PVDF膜中自由基浓度分别与(口)碱处理时间(浓度0.07mol/L)和(▲)碱浓度(时间100min)

的关系

根据以上光谱和ESR分析结果,FT-Raman光谱结果表明碱处理的PVDF膜中形成了多烯结构,而ESR结果表明在此过程中也形成了一种自由基(图1-6自由基6)。

自由基和碳碳双键的数量均随碱处理时间的延长而增加。

这意味着,PVDF首先受到氢氧根离子攻击而被脱去氟化氢形成双键,正如Kise和Ogata以及Ross所述。

这样碳碳双键的a碳上的氢原子变得更加活泼,易于脱去而形成自由基。

如果相邻碳原子上都有未成对电子,将进一步结合形成新的碳碳双键,最后形成8~9个共轭碳碳双键的多烯自由基。

在碱浓度较高时,开始形成的自由基也多,更容易结合而形成碳碳双键,因此,在相同碱处理时间的情况下,碱浓度高至一定程度,形成的自由基数目反而降低,而碳碳双键数目仍有所增大。

1.3PVDF晶型结构

PVDF除了广泛应用在水处理领域外,由于PVDF晶型多样性使其有着优良的压电性、焦电性、高机械性、高绝缘性和耐冲击性,因此还广泛应用于简单的绝缘体、半导体、压电薄膜和快离子导体膜。

PVDF常见的晶体结构主要有三种:

B、a丫。

a相PVDF具有优异的力学性能;B相PVDF具有很强的压电效应;丫晶型为极性,一般产生于高温熔融结晶。

PVDF三种晶型在不同的条件下产生,又在一定的条件下相互转变,因而PVDF因为

晶型晶体结构的不同而显示不同的性能。

1.3.1a晶型

a晶型是PVDF最普通的结晶形式。

其为单斜晶系,晶胞参数为a=0.496nm,b=0.964nm,

c=0.462nmT4]。

a晶型的构型为TGTG'并且由于其链偶极子极性相反,所以不显极性[15]。

在一定的温度下以较大的降温速率熔融冷却可以得到晶型的PVDF。

在与环己酮、二

甲基甲酰胺、氯苯形成的溶液中结晶也可以得到a晶型的PVDF[16]。

1.3.2B晶型

B晶型是PVDF的重要结晶形式,在压电和热释电方面有广泛的应用。

其为正交晶系,

晶胞参数为a=0.858nm,b=0.491nm,c=0.256nm。

B晶型构型为全反式TTT,晶胞中含有极性的锯齿形链[17],B晶型一般存在于拉伸取向的PVDF中,分子链呈规整排列,自发极化大,取向后的介电常数从6~8提高到11~14,一般通过机械拉伸a晶型的PVDF可以转变成B晶型的PVDF,这种转变很大程度上受机械形变的影响。

B晶型的PVDF还可以在

其它多种条件下产生。

R.J.Gregorio等[18]通过红外光谱发现20%的PVDF在DMF溶液中结晶,60°C时产生B晶型。

随着温度的升高,B晶型的含量逐渐降低,并向a晶型转变。

共聚结晶,偏氟乙烯单体与其它单体进行共聚合得到的共聚物显示较强的压电性能,并且共

聚物中的组成影响PVDF的晶型。

有文献报道[19]在偏氟乙烯与四氟乙烯的共聚物中,当四氟乙烯的含量超过7mol%时,PVDF由aft型转变为B晶型。

1.3.3丫晶型

Y晶型由于其晶胞结构有许多争论,一直受到关注。

Hasegaw等[20]用非取向的PVDF以确定Y晶型的结构,发现y晶型链的构型与3晶型几乎一致,为全反式结构。

y晶型的晶胞为单斜,晶胞参数为a=0.1866nmb=0.1493nm,c=0.1258nm,晶面夹角97°,与谒型的晶胞参数稍有不同。

Y晶型一般产生于高温结晶。

J.Lovinger等[21]在200~22『C将PVDF/DMF熔融30min,在160~165°C进行重结晶,得到湖型的PVDF。

在不同环压力下对《晶型的PVDF进行热处理也能产生湖型[22]oPVDF与二甲基亚砜(DMSO)、二甲基乙酰胺(DMA)、二甲基甲酰胺(DMF)形成的溶液,在咼温熔融结晶,也发现湖型⑴。

1.3.4影响结晶形态的因素

A.不同温度对结晶型态的影响

下图1-8是PVDF树脂溶剂铸膜,制备的不同热处理温度条件下薄膜样品的FTIR谱图。

对于PVDF的红外光谱已有大量的研究工作[23],在530、615、765、796、855、975cm-1的振动带相当于亦目结晶,位于470、510、840cm-1的谱带为侨目结晶,而位于430、510、840cm-1的谱带为湘结晶。

图1-1(a)是a目PVDF的FTIR曲线,其中出现了几乎所有的湘结晶吸收峰,而代表3湘的结晶吸收蜂430、470、510、840cm-1都很弱。

图1-1(b)是经过60~120)C热处理的样品FTIR曲线,其中代表a相结晶吸收峰的明显降低,在796cm-1处完全消失,而代表湘445、510cm-1吸收峰明显增强。

图1-1(c)是经过150°C热处理的样品FTIR曲线,从图中可知,代表湘结晶吸收峰强度介于图(a)和图(b)之间,代表湘的430cm-1最强,而代表3相的445cm-1吸收峰则基本消失。

由下图可以得知,控制温度在60oC~12(oC,可以得到3晶型的PVDF薄膜

I甘门门7006

波K/^m-

图1-8PVDF膜红外图谱

B.溶剂对膜结晶性能的影响

图1-9为从铸膜液DMSO、DMF、NMP制得的PVDF膜的红外光谱。

所有的红外光谱中都没有出现776cm-1、810cm-1的y晶型的特征峰,说明在相转化制膜过程中很难形成y晶型。

采用DMSO为溶剂时,膜的红外光谱在510cm-1处的吸收峰最强,而535cm-1处的吸收峰最弱;采用DM

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 经济学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1