数字频率计课程设计报告.docx
《数字频率计课程设计报告.docx》由会员分享,可在线阅读,更多相关《数字频率计课程设计报告.docx(20页珍藏版)》请在冰豆网上搜索。
数字频率计课程设计报告
信息科学与工程学院
数字频率计
设计报告书
前言
摘要:
在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
测量频率的方法有多种,其中数字计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。
其原理为通过测量一定闸门时间信号的脉冲个数。
本文阐述了设计了一个简单的数字频率计的过程。
关键词:
频率计,闸门,逻辑控制,计数-锁存
第一章设计目的
第二章设计任务和设计要求
2.1设计任务及基本要求
2.2.系统结构要求
第三章系统概述
3.1概述
3.2设计原理及方案
第四章单元电路设计及分析
4.1时基电路4.2逻辑控制电路4.3计数电路4.4锁存电路4.5显示译码电路4.6闸门电路
4.7报警电路
第五章安装与调试过程
5.1电路的安装过程
5.2电路的调试过程
5.3出现的问题及解决办法
第六章结果分析
第七章收获与体会
第八章元件清单
第十章实现结果实物图
附录A参考文献
附录B总体电路图
第一章
设计目的:
1.了解数字频率计测量频率与测量周期的基本原理;
2.熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。
3.本设计与制作项目可以进一步加深我们对数字电路应用技术方面的了解与认识,进一步熟悉数字电路系统设计、制作与调试的方法和步骤。
4.针对电子线路课程要求,对我们进行实用型电子线路设计、安装、调试等各环节的综合性训练,培养我们运用课程中所学的理论与实践紧密结合,独立地解决实际问题的能力。
第二章
设计任务及要求:
2.1设计任务及基本要求:
设计一简易数字频率计,其基本要:
1)测量频率围0~999999Hz;
2)最大读数999999HZ,闸门信号的采样时间为1s;.
3)被测信号可以是正弦波、三角波和方波;
4)显示方式为6位十进制数显示;
5)具有超过量程报警功能。
5)输入信号最大幅值可扩展。
6)测量误差小于+-0.1%。
7)完成全部设计后,可使用EWB进行仿真,检测试验设计电路的正确性。
2.2.系统结构要求
数字频率计的整体结构要求如图所示。
图中被测信号为外部信号,送入测量电路进行处理、测量。
第三章
3.1概述:
频率计的基本原理是用一个频率稳定度高的频率源作为基准时钟,对比测量其他信号的频率。
通常情况下计算每秒待测信号的脉冲个数,此时我们称闸门时间为1秒。
闸门时间也可以大于或小于一秒。
闸门时间越长,得到的频率值就越准确,但闸门时间越长则没测一次频率的间隔就越长。
闸门时间越短,测的频率值刷新就越快,但测得的频率精度就受影响。
本文。
数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
电子系统非常广泛的应用领域,到处可见到处理离散信息的数字电路。
数字电路制造工业的进步,使得系统设计人员能在更小的空间实现更多的功能,从而提高系统可靠性和速度。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器
数字集成电路广泛用于计算机、控制与测量系统,以及其它电子设备中。
一般说来,数字系统中运行的电信号,其大小往往并不改变,但在实践分布上却有着严格的要求,这是数字电路的一个特点。
数字集成电路作为电子技术最重要的基础产品之一,已广泛地深入到各个应用领域。
3.2设计原理及方案
数字频率计是直接用十进制的数字来显示被测信号频率的一种测量装置。
它不仅可以测量正弦波、方波、三角波和尖脉冲信号的频率,而且还可以测量它们的周期。
所谓频率就是在单位时间(1s)周期信号的变化次数。
若在一定时间间隔T测得周期信号的重复变化次数为N,则其频率为f=N/T,据此,设计方案框图如图1所示:
Fx被测信号
图中脉冲形成的电路的作用是将被测信号变成脉冲信号,其重复频率等于被测信号的频率fX。
,时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则们控电路的输出信号持续时间亦准确的等于1s。
闸门电路由标准秒信号进行控制当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数器译码显示电路。
秒信号结束时闸门关闭,技计数器得的脉冲数N是在1秒时间的累计数,所以被测频率fX=NHz
同时由图可知数字频率计由八部分组成:
时基电路,逻辑控制电路,闸门电路,整形电路,计数电路,锁存器,译码显示器和振荡电路。
时基信号发生器提供标准的时间脉冲信号,其高电平持续时间为1S。
闸门电路由标准时间信号进行控制,在时基脉冲的上升沿到来时闸门开启,计数器开始计数,在同一脉冲的下降沿到来时,闸门关闭,计数停止计数。
同时逻辑控制电路产生一个锁存信号输送到锁存器的使能端将结果锁存,并把锁存结果输送到译码器来控制七段显示器,这样就可以得到被测信号的数字显示的频率。
而在锁存信号的上升沿到来时,逻辑控制电路产生一个清零信号将计数器清零,为下一次测量做准备,实现了可重复使用,避免两次测量结果相加使结果产生错误。
被测信号频率通过计数锁存可直接从计数显示器上读出。
各点的波形如图;
数字频率计的工作时序波形
其中,1路为未知频率波形,2路为时基波形,3路为计数信号波形,4路为锁存信号波形,5路为清零信号波形。
逻辑控制单元的作用有两个:
其一,产生清零脉冲④,使计数器每次从零开始计数;
其二,产生所存信号⑤,是显示器上的数字稳定不变。
这些信号之间的时序关系如图2(b)所示数字频率计由时基电路、控制电路、闸门电路、计数锁存和清零电路、脉冲形成电路和译码显示电路组成
第四章
单元电路设计及分析
4.1时基电路
时基电路的功能是产生一个高电平持续时间为1S的信号送到闸门电路以及一个周期为1S的信号送到逻辑控制电路。
它由两部分组成,是一个32768和一个CC4060芯片以及两个T‘触发器组成。
32768的核心是晶体振荡管,晶体振荡管提供一个频率稳定的32768hz的方波信号,由32768和CC4060连成的电路产生的2HZ脉冲信号送到逻辑控制电路,此脉冲信号在经过一个T’触发器分频后得到高电平持续时间为1S的脉冲信号送入闸门。
时基信号电路图如下;
4.2逻辑控制电路
逻辑控制电路的功能是在计数器计数完成后产生一个3S
的锁存信号输送到锁存器的使能端将结果锁存,并把锁存结果输送到译码器来控制七段显示器,这样就可以得到被测信号的数字显示的频率。
而在锁存信号的上升沿到来时,逻辑控制电路产生一个清零信号将计数器清零。
逻辑控制电路由一个74LS160芯片和一个74LS138芯片组成以及两个非门。
选用74LS160和一个非门改装成一个五进制计数器,再把五进制计数器前三个输出端对应的接到74LS138的三个输入端A2,A1,A0,从时基电路送来的周期为1S的脉冲信号输送到74LS160的CP端,于是在脉冲信号的不断作用下74LS138的输出端从Y0~Y4的非之间不断变化。
其中Y0的非信号经过一个非门送到计数器的S1,S2端使计数器能够正常计数,Y1的信号即是锁存信号,送到锁存器的CP端,Y4的非信号是清零信号,送到锁存器的CP端。
其电路图如下:
4.3计数器
计数器的功能是对闸门送来的被测信号的频率进行测量计数。
根据精度要求,采用6个十进制计数器级联,构成N=10六次方计数器。
十进制计数器仍采用74LS160实现。
闸门电路的输出送到每个74LS160的CP端,计数器在74LS138的后输出信号的控制下对被测信号进行脉冲送数。
其中计数器的清零信号由74LS138的Y4的非输出端提供,控制信号由74LS138的Y0的非输出端提供,计数器输出结果后送入锁存器。
其电路图如下;
4.4锁存电路
锁存器的作用是将计数器在1s结束时的计数值进行锁存,使显示器获得稳定的测量值。
因为计数器在1s要计算成千上万个输入脉冲,若不加锁存器,显示器上的数字将随计数器的输出而变化,不便于读数。
如图2所示,1s的计数结束时。
逻辑控制电路发出的锁存信号,将计数器此时的值送到译码器,因此显示器的数字是稳定的。
选用了三片8D锁存器74LS273可以完成上述锁存功能。
74LS273的真值表如表1所示。
表174LS273真值表
当时钟脉冲CP的上升沿到来时,锁存器的输出等于输入,即Q=D。
从而将六个个十进制计数器即个位、十位、百位、千位、万位、十万位的输出值送到锁存器的输出端。
正脉冲结束后,无论输入端D为何值,输出端Q的状态仍然保持原来的状态。
所以在计数周期,计数器的输出不会送到译码显示器。
锁存电路如下:
4.5显示译码电路
本部分电路由译码器和显像管组成。
在锁存器将门控信号周期的计数结果存储起来情况下,把所存储的状态送入译码器进行译码,在显示器上得到稳定的计数显示。
4.6波形整形电路
为了能测量不同电平值与波形的周期信号的频率,必须对被测信号进行放大与整形处理,使之成为能被计数器有效识别的脉冲信号。
信号放大与波形整形电路的作用即在于此。
波形整形一般由与非门逻辑电路构成。
整形电路由晶体二极管74LS00等组成。
与非门74LS00构成施密特触发器,它输出信号进行整形,从而得到方波脉冲。
4.7闸门电路
本部分电路由与门组成,该电路有两个输入端和一个输出端,输入端的一端,接门控信号,另一端接整形后的被测方波信号。
闸门是否开通,受门控信号的控制,当门控信号为高电平“1”时,闸门开启;而门控信号为低电平“0”时,闸门关闭。
显然,只有在闸门开启的时间,被测信号才能通过闸门进入计数器,计数器计数时间就是闸门开启时间。
可见,门控信号的宽度一定时,闸门的输出值正比于被测信号的频率,通过计数显示系统把闸门的输出结果显示出来,就可以得到被测信号的频率。
4.8报警电路
本设计要求用六位数码管显示,最高显示为999999。
因此,超过999999就要求报警,即当十万位达到9时,如果万位上再来一个时钟脉冲(即进位脉冲),则千位计数器也会产生进位信号,将此信号输出后送给报警电路的输入端,驱动报警电路工作。
第五章
安装与调试过程
设计好以上每个模块的电路后便可画出整个数字频率计的电路图,然后列出所需要的元器件清单。
拿到元器件按照整体电路图安装好数字频率及的电路后,进行调试,首先分模块进行调试,在每个模块调试正确后,不规则进行联调。
因为整个电路的分析是瞬态分析,故总体电路的分析需要较长时间。
5.1电路的安装过程
1.连电路之前要先做好一切准备,如;线检查一下面包板是否完好,整理好要用的实验工具,再将要用的芯片按型号分类,这样在连接电路时又方便又不易出错。
2.开始连接电路,电路连接要求导线要横平竖直并且最好不要交叉,所以要先考虑好电路的布局后根据电路连接合理的插接芯片,插芯片时也要注意,要把所有的管脚都插进去后要均匀平稳的按下去,拔芯片的时候也要平稳,以免折断管脚。
3.连电路是要分局部连接,每一个功能模块要分开接,这样连接的电路除了什么错误就比较容易发现并改正。
5.2电路的调试过程
1.用示波器来检测石英晶体振荡器的输出波形和频率,晶振正常的输出频率应为32768HZ。
2.将频率为32768HZ的信号送入分频器,并用示波器检查各级分频器的输出频率是否符合设计要求。
3.用周期为1S的信号作逻辑控制电路的时基信号输入,用发光二极管来检查74LS138的的输出端从Y0~Y4的输出端是否正常
4.用周期为一秒的信号送入各计数器CP端,用发光二极管检查个计数器的正常工作情况。
5.最后用同样的方法检测锁存器是否正常锁存,译码器能否正常工作是显示管显示数字等。
6.分频,逻辑控制电路,计数,锁存和显示都没有问题后,调试完成。
5.3电路出现问题及解决方法
1.在检测面包板状况中,出现本该相通的地方却未通的状况,经检查发现是由于接线点中间断开所致,用导线连接急排除。
2.在检测整体电路时,发现电路短路的情况,并导致数码管烧坏,经检查发现,是有好几个芯片坏掉所致,更换新的数码管和芯片就解决了问题。
在检测74LS160向74LS273送数的时候,发现74LS273的输出始终为0000,测量各管脚的电压后,发现是74LS160与74LS273之间的线少接了两根,连接上后便能正常工作。
去检测6个74LS160芯片的进位状况时,发现千位到万位的进位无常进行,经过仔细排查,最后发现有两个74LS160之间的线路连接有问题。
3.检测脉冲发生器时,发现脉冲发生器的输出始终为高电平,这可能是某些元器件损坏的缘故,在对每个元件逐一更换后发现是其中一个电阻坏掉了,更换该电阻后,秒脉冲发生器的输出终于可以在高电平和低电平之间不断地跳变了。
4.在检测74LS273的锁存功能的时,发现输入的频率信号会被重复技术导致显示的频率为原来的两倍,检测后发现锁存功能无法实现的原因是有两根线没有连接,在连接后,电路就恢复正常了。
5.最后输入被测信号的频率测量,发现数码显示的数值是输入信号的一般,而有时候显示的数字却又是正常的。
发生这中不稳定的现象时,我们开始初步认定是分频器的问题。
在设计电路时候,我们采用的是一片74LS112双JK触发器转换成两个T’触发器作为分频器,于是我们最后使用了两片74LS112双JK触发器,一片74LS112双JK触发器只转换成一个T’触发器,采用了这次改变后,我们发现显示的数值终于正常了。
6.整个连接的时间花了整整两天,而调试却花了三天的时间。
可见数字电路的重点是调试工作,调试是设计的核心容,这是关键。
第六章
结果分析
经过几天的安装与调试,最后终于出结果,实现了以下几个功能:
1)测量频率围0~999999Hz的频率;
2)最大读数999999HZ,闸门信号的采样时间为1s;.
3)被测信号可以是正弦波、三角波和方波;
4)显示方式为6位十进制数显示;
5)具有超过量程光、声报警功能。
5)输入信号最大幅值可扩展。
6)测量误差小于+-0.1%。
存在一定的误差,原因:
线路接口太多,为了保持接线的美观,没有很弯曲的线,所以只能弄折线,接线点就会增加,导致一定的误差。
报警功能也实现的比较好,当实验测量值超过一定的数值时,电路会自动报警。
二极管也会自动亮。
最终试验整体电路图:
分为如下几个模块:
整形电路、时钟控制电路,计数模块,锁存模块,译码显示。
输入信号:
时钟基准信号ip,待测信号fry
第七章
心得及体会
首先,经过一个星期的课程设计,通过对各种资料的查阅,我发现了自己动手的乐趣。
以前所学的知识都被局限于课本之中,这次通过课程设计我体会到了,只要勇于探索和吸收,知识是无边无境的。
以前上课都是上一些最基本的东西而现在却可以将以前学的东西作出有实际价值的东西。
在这个过程中,我的确学得到很多在书本上学不到的东西,如:
如何利用现有的元件组装得到设计利用计算机来画图等等。
但也遇到了不少的挫折,有时遇到了一个错误怎么找也找不到原因所在,找了老半天结果却是接头的方向接错了,有时更是忘接电源了。
在学习中的小问题在课堂上不可能犯,在动手的过程中却很有可能犯。
特别是在接电路时,一不小心就会犯错,而且很不容易检查出来。
但现在回过头来看,还是挺有成就感的。
我的动手能力又有了进一步的提高,我感到十分的高兴.
其次,这次课程设计中,我锻炼了自己的自学能力和解决问题的能力。
在这个过程中遇到了很多问题,比如如何画图,如何组织那种专业语言,上网、到图书馆查找相关的资料。
虽然很费劲,但是其乐无穷。
通过此次的设计,我发现到这个设计对数字电子技术的学习要求非常高,我相信在今后的学习和工作中它也占据着非常重要的地位。
课堂中的学习是远远不够的,我们还需要自己吸收和再学习,不断的探索和研究。
这样在以后的学习工作中才能节节进步,不断创新。
不但如此,我想要完成一个任务,不能只局限于自己所学的知识中,要各个方面都有涉猎,提高自己的综合能力,这样才能取得长足的进步。
最后,通过此次的设计,我还领略到了团队精神的可贵。
我觉得我的的专业知识学习的不扎实,在设计的过程中,会遇到各种问题。
这时我就会向同组同学请教,共同完成这个设计。
尽管如此,设计中仍会有我们未发现的问题,感老师的悉心指正。
对我而言,知识上的收获重要,精神上的丰收更加可喜。
挫折是一份财富,经历是一份拥有。
这次设计将成为我学习旅途中一个美好的回忆!
第八章
元件清单:
名称
参数
个数
备注
74LS160
7
计数器
74LS273
3
锁存器
74LS00
3
74LS02
1
74LS04
3
74LS08
1
共阴极数码管
6
显示器
74LS47
6
译码器
CC4060
1
信号发生器
PNP型三极管
1
二极管
1
蜂鸣器
1
报警器
电阻
20M
1
电阻
10K
2
电容
20PF
2
晶体振荡器
1
第九章
实物图:
显示数据部分图
整体图
附录A参考文献
1.《数字电子技术设计应用教程》:
中南大学2003
罗桂蛾等主编
2.《数字电子技术基础》:
中南大学2009
明义主编
3.《电子系统设计与实践》:
电子工业2003
刚、周群主编
4.《电工电子实验技术》:
西北工业大学2005
杜清珍主编
5.《中国集成电路大全——TTL集成电路》;国防工业1989保经主编
成绩评定
设计:
实验:
报告:
总成绩:
成绩评定人