Reliable information hiding based on support vector machine.docx

上传人:b****7 文档编号:10461899 上传时间:2023-02-13 格式:DOCX 页数:20 大小:371.05KB
下载 相关 举报
Reliable information hiding based on support vector machine.docx_第1页
第1页 / 共20页
Reliable information hiding based on support vector machine.docx_第2页
第2页 / 共20页
Reliable information hiding based on support vector machine.docx_第3页
第3页 / 共20页
Reliable information hiding based on support vector machine.docx_第4页
第4页 / 共20页
Reliable information hiding based on support vector machine.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

Reliable information hiding based on support vector machine.docx

《Reliable information hiding based on support vector machine.docx》由会员分享,可在线阅读,更多相关《Reliable information hiding based on support vector machine.docx(20页珍藏版)》请在冰豆网上搜索。

Reliable information hiding based on support vector machine.docx

Reliableinformationhidingbasedonsupportvectormachine

ReliableInformationHidingBasedonSupportVectorMachine

Yong-GangFu1,3,Rui-MinShen1,Li-PingShen1andXu-ShengLei2

1Dept.ofComputerScienceandEngineering,ShanghaiJiaotongUniv.,Shanghai,China,200030

2Dept.ofAutomation,ShanghaiJiaotongUniv.,Shanghai,China,200030

3Dept.ofSoftware,XiamenUniv.,Xiamen,Chian,361000

E-mails:

{fyg,rmshen,lpshen,xushenglei}@

Abstract:

Inthispaper,areliableinformationhidingschemebasedonsupportvectormachineanderrorcorrectingcodesisproposed.Toextractthehiddeninformationbitsfromapossiblytamperedwatermarkedimagewithalowererrorprobability,informationhidingismodeledasadigitalcommunicationproblem,andboththegoodgeneralizationabilityofsupportvectormachineandtheerrorcorrectioncodeBCHareapplied.Duetothegoodlearningabilityofsupportvectormachine,itcanlearntherelationshipbetweenthehiddeninformationandcorrespondingwatermarkedimage;whenthewatermarkedimageisattackedbysomeintentionalorunintentionalattacks,thetrainedsupportvectormachinecanrecovertherighthiddeninformationbits.Thereliabilityoftheproposedschemehasbeentestedunderdifferentattacks.Theexperimentalresultsshowthattheembeddedinformationbitsareperceptuallytransparentandcansuccessfullyresistcommonimageprocessing,jitterattack,andgeometricaldistortions.Whenthehostimageisheavilydistorted,thehiddeninformationcanalsobeextractedrecognizably,whilemostofexistingmethodsaredefeated.Weexpectthisapproachprovideanalternativewayforreliableinformationhidingbyapplyingmachinelearningtechnologies.

Keywords:

Informationhiding;Supportvectormachine;Digitalwatermarking;BCHcoding

1.Introduction

DigitalpropertiesarereadilyreproducedandredistributedovertheInternetandothermedias.Howevertheseattractivepropertiesleadtoproblemsenforcingcopyrightprotectionissues.Asaresult,thecontributoranddistributorofthedigitalpropertiesarehesitanttoprovidetheaccesstotheirintellectualproperties.Itisrealizedthatconventionalcryptographicmeansarenotsufficientsincethedataiswithoutanyprotectionassoonasitisused,e.g.,decryptedanddisplayedinthecaseofimageorvideodata.Apotentialapproachtosolvethisproblemisinformationhidingordigitalwatermarking(Swansonetal.,1998).Informationhidingistheimperceptibleembeddingofinformationbits(signature)intomultimediadata,wheretheinformationremainsdetectableaslongthequalityofthecontentitselfisnotrendereduseless.Asabranchofinformationhiding,itiscommonlyassumedthatdigitalwatermarkingisonlyoneofseveralmeasuresthathavetobecombinedtobuildagoodcopyprotectionmechanism(FuronandDuhamel,2000).Asignificantmeritofdigitalwatermarkingovertraditionalprotectionmethodsistoprovideaseamlessinterface,sothatusersarestillabletoutilizetheprotectedmultimediatransparently.

Aninformationhidingschemeshouldatleastmeetthefollowingrequirements:

(1)Perceptualinvisible(ortransparent).

(2)Difficulttoremovewithoutseriouslyaffectingtheimagequality.(3)Robustresistancetoimageprocessing,andattacks.

Developinganalgorithmcapableofproducingsignaturethatfulfillsalltheserequirementsisnotaneasytask.Ononehand,theinformationhidingprocessshouldnotintroduceanyperceptibleartifactsintothehostimage.Ontheotherhand,forhighrobustnessitisdesirablethatthemarkamplitudeisashighaspossible.Therefore,thedesignationofinformationhidingmethodalwaysinvolvesatradeoffbetweenimperceptibility(ortransparency)androbustness.Avarietyofwatermarkingorinformationhidingschemeshavebeenreportedrecentlyintheliterature,andsomenicereviewscanbefoundin(Fabienetal.,1999).However,theresearchoncopyrightprotectionofimagesisstillinitsearlystageandnoneoftheexistingmethodsistotallyeffectiveagainstmaliciousattacks.

Thereareavarietyofschemesforhidinginformationintotheoriginalimage.Typicalschemesfortheinformationhidinginimagescanbebroadlyclassifiedintotwocategories:

(i)spatialdomainmethodswhichembedthedatabydirectlymodifyingthepixelvaluesoftheoriginalimage(NikolaidisandPitas,1998);(ii)transformdomainmethodswhichembedthedatabymodulatingthecoefficientsofproperlychosentransformdomainsuchasDCT(Coxetal.,1997;Barnietal.,2000),DFT(Barnietal.,2000),andDWT(Xiaetal.,1998).Manyofthespatialdomaintechniquesprovidesimpleandeffectiveschemesforembeddinganinvisiblewatermarkintoanimagebutarenotrobusttocommonattacks.Informationhidingtechniquescanbealternativelysplitintotwodistinctcategoriesdependingonwhethertheoriginalimageisnecessaryforthewatermarkextractionornot.Althoughtheexistenceoftheoriginalimagefacilitateswatermarkextraction(Coxetal.,1997;Swansonetal.1996;PodilchukandZeng,1998)togreatextent,sucharequirementraisestwoproblems:

(i)owneroftheoriginalimageiscompelledinsecurelytosharehisworkswithanyonewhowantstochecktheexistenceofthesignature(Barnietal.,1998),(ii)ontheotherhand,thesearchingwithinthedatabasefortheoriginalimagethatcorrespondstoagivenwatermarkedimagewouldbeverytimeconsuming.Thus,methodscapableofrevealingtheinformationbitspresencewithoutcomparingthewatermarkedandoriginalimageswouldbepreferable.

Inordertodesignrobustinformationhidingscheme,Coxetal.consideredwatermarkingasaproblemofcommunicationwithsideinformation(Coxetal.,1999).Also,somewatermarkingalgorithminliteratureappliederrorcorrectingcoding(ECC)toimprovethebiterrorrate(BER)performance,suchasBose-Chaudhuri-Hocquenghen(BCH)coding(Huangetal.1998;HuangandYun,2002),Reed-Solomon(R-S)code(WuandHsieh,2000),andTurbocode(PereiraandPun,2000).Recently,effortsaremadetouseartificialintelligencetechniqueforwatermarkembeddingandextraction.Neuralnetworksareintroducedintowatermarkingin(Yuetal.,2001),whichmakesthewatermarkextractionmorerobustagainstcommonattacks.GeneticalgorithmisproposedforselectionofthebestembeddingpositionsinblockbasedDCTdomainwatermarking(Shiehetal.,2004).Wehavefirstlyintroducedthesupportvectormachineforthewatermarkembeddingandextractionin(Fuetal.,2004),inwhichthewatermarkisembeddedintothehostbyapplyingthegoodlearningabilityofsupportvectorregressionmachine,andthewatermarkextractionisfinishedbytheaidsofthewelltrainedsupportvectormachine.Wecanexpectthatthecombinationofinformationhidingandmachinelearningtechniquesmightbeagoodsolutionforreliableinformationhiding.

Fromtheobservationsabove,inthispaperweproposeanovelblindreliableinformationhidingandrecoveringschemewhichmakesuseofsupportvectormachineandBCHcoding.Thisworkcanbeconsideredasanextensionofsomeexistingresearch(Kutteretal.,1998;Yuetal.,2001;Fuetal.,2004).In(Kutteretal.,1998),Kutterproposedaspatialdomainwatermarkingschemeforcolorimage.ThenYu(Yuetal.,2001)improvedKutter’smethodbyapplyingneuralnetworks.Duetothesupportvectormachine’sgoodlearningabilityintrainingprocess,itcanmemorizetherelationshipbetweentheembeddedinformationandcorrespondingwatermarkedimage.ApplyingSVM’sgoodgeneralizationabilitiesanderrorcorrectingabilityofBCHcoding,hiddeninformationextractioncanbefinishedwell.Experimentalresultsshowgoodrobustnessoftheproposedschemeagainstcommonimageprocessingandattacks.Thisresearchismuchdifferentfrommyearlywork.Inthisresearch,thesupportvectormachineisonlytrainedandappliedintheinformationextractionprocedure,whereas,in(Fuetal.,2004),thesupportvectorregressionmachineisappliedbothinthewatermarkembeddingandextractionprocess.

Thepaperisorganizedasfollows:

insection2,basicconceptionsforsupportvectormachineareintroduced.Theembeddingandextractionalgorithmsofourmethodaredescribedinsection3.

Insection4,someexperimentalresultsareexhibited.Theconclusionisstatedinsection5.

2.AnoverviewofSupportVectorMachine

SupportVectorMachine(SVM)isauniversalclassificationalgorithmdevelopedbyVapnikandhiscolleagues(Vapnik,1995;Vapnik,1998).Inrecentyears,therehavebeenalotofinterestsinstudyingtheapplicationsofSVMonfunctionapproximation,patternrecognitionproblemsandsoon(Campbell,2002;Christopher,1998).

Givenatrainingdatasetofmsamples

where

istheithinputpatternand

istheithoutputpattern.

Thesupportvectormachinemethodsupposeswehavesomehyper-planesthatseparatethepositivesamplesfromnegativeones.Thepoint

whichliesonthehyper-planesatisfies

where

isnormaltothehyper-plane,

istheperpendiculardistancefromthehyper-planetotheorigin,and

istheEuclideannormof

.Forthelinearlyseparablecase,thesupportvectoralgorithmsimplylooksfortheseparatinghyper-planewiththelargestmargin.Thiscanbeformulatedasfollowing:

supposethatallthetrainingdatasatisfythefollowingconstraints:

(1)

Thiscanbecombinedintoonesetofinequalities:

(2)

Nowconsiderthepointsforwhichtheequalityin

(1)holds.Thesepointslieonthehyper-plane

withnormal

andperpendiculardistancefromtheorigin

.Similarly,thepointsforwhichtheequalityholdsin

(1)lieonthehyper-plane

withnormal

andperpendiculardistancefromtheorigin

.Hencethe

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机硬件及网络

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1