移相全桥全参数计算.docx

上传人:b****2 文档编号:1042181 上传时间:2022-10-15 格式:DOCX 页数:23 大小:1.32MB
下载 相关 举报
移相全桥全参数计算.docx_第1页
第1页 / 共23页
移相全桥全参数计算.docx_第2页
第2页 / 共23页
移相全桥全参数计算.docx_第3页
第3页 / 共23页
移相全桥全参数计算.docx_第4页
第4页 / 共23页
移相全桥全参数计算.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

移相全桥全参数计算.docx

《移相全桥全参数计算.docx》由会员分享,可在线阅读,更多相关《移相全桥全参数计算.docx(23页珍藏版)》请在冰豆网上搜索。

移相全桥全参数计算.docx

移相全桥全参数计算

1、介绍

在大功率服务器件中,为满足高效和绿色标准,一些供电设计师们发现使用移相全桥转换器更容易。

这是因为移相全桥变换器可以在转换器原边获得零切换。

这个应用程序的目的是设计报告审查的600W移相全桥变换器在电力系统中,利用TI的新UCC28950移相全桥控制器,并基于典型值。

在生产设计需要修改的值最坏情况的条件。

希望这些信息将帮助其他电源设计者的努力设计一个有效的移相全桥变换器。

表1设计规

描述

最小值

典型值

最大值

输入电压

370V

390V

410V

输出电压

11.4V

12V

12.6V

允许输出电压瞬变

600mV

加载步骤90%

输出电压

600W

满负荷效率

93%

电感器切换频率

200kHz

2、功能示意图

3、功率预算

为满足效率的目标,一组功率预算需要设定。

4、原边变压器计算T1

变压器匝比(a1):

估计场效应晶体管电压降(VRDSON):

基于最小指定的输入电压时70%的占空比选择变压器。

基于平均输入电压计算典型工作周期(DTYP)

输出电感纹波电流设置为输出电流的20%。

需要注意在选择变压器磁化电感的正确数值(LMAG)。

下列方程计算主变压器(T1)的最低磁化电感,确保变频器运行在电流型控制。

如果LMAG太小,磁化电流会导致变换器运行在电压模式控制代替peak-current模式。

这是因为磁化电流太大,它将作为PWM坡道淹没RS上的电流传感信号。

图2显示了T1原边电流(IPRIMARY)和同步整流器QE和QF电流对同步整流栅驱动电流的反应。

注意I(QE)I(QF)也是T1的次级绕组电流。

变量D是转换器占空比。

计算T1次级均方根电流(ISRMS):

副边均方根电流(ISRMS1)当能量被传递到副边:

副边均方根电流(ISRMS2),当电流通过变压器,QEQF开通

副边均方根电流(ISRMS3)引起的负电流在对方绕组随心所欲的时期,请参阅图2。

副边总均方根电流(ISRMS):

计算T1原边均方根电流(IPRMS):

T1原边均方根电流(IPRMS1当能量被传递到次边

T1原边均方根电流(IPRMS2)当转换器

总T1原边均方根电流(IPRMS)

此设计一个Vitec变压器被选中,型号75PR8107有一下规

测量漏原边漏感:

变压器原边直流电阻:

变压器副边直流电阻:

估计转换损失(PT1)是铜损的两倍。

(注意:

这只是一个估计,基于磁设计总损失可能会有所不同。

计算剩余功率预算:

5、QA,QB,QC,QDFET选择

本设计以满足效率和电压要求,20A650V,CoolMOSFETs英飞凌被选择QaQbQcQd

场效应晶体管漏源电阻:

场效应晶体管输出电容指定:

电压drain-to-source(VdsQA),输出电容测量,数据表参数:

计算平均输出电容[2]:

QA场效应晶体管栅极电荷:

激活栅场效应晶体管的门级电压:

计算Qa损失基于Rds和门QAg

重新计算功率预算:

6、选择LS

计算(LS)是基于实现零电压所需的能量切换。

这个电感需要能够消耗的能量开关的寄生电容节点。

以下方程选择LS实现零电压在100%负荷降至50%负荷的基础上初级场效应晶体管的平均总输出电容开关节点。

注意:

可能比估计的有更多的寄生电容在开关节点,LS估计可能需要调整根据实际寄生电容在最后的设计。

为此设计一个26-μHVitec感应器被选为60PR964零件。

有以下规格。

LS直流电阻:

LS估计功率损耗(PLS)和调整剩余功率预算:

7、LOUT选择

电感器设计为电感纹波电流20%(ΔILOUT):

计算输出电感均方根电流(ILOUT_RMS):

Vitec电感器电子公司2-μH的电感,75PR108被选为这个设计。

电感器有以下规。

输出电感的直流电阻:

估计输出电感的损失(PLOUT),重新计算功率预算。

注意PLOUT是估计的电感器铜损的两倍的损失。

注意基于磁生产可能会有所不同。

建议最好仔细检查磁与磁生产损失。

8、输出电容COUT

输出电容器选择基于稳态和瞬态(VTRAN)负载要求。

LOUT改变满载电流的90%的时间

负载瞬变期间,大部分的电流会立即通过电容器等效串联电阻(ESRCOUT)。

下面的方程用于选择ESRCOUT和COUT,基于90%电流的负载。

选择ESR容许瞬变电压的90%(VTRAN),当输出电容(COUT)由VTRAN的10%所选择。

选择所需的输出电容也是前计算输出电容器均方根电流(ICOUT_RMS)。

满足我们的设计要求5个1500-μf,铝电解电容器的选择从曼联Chemi-Con设计,零件号EKY-160ELL152MJ30S。

这些电容器的ESR31mΩ。

输出电容的数量:

总的输出电容

有效输出电容ESR:

计算输出电容器损耗(PCOUT):

重新计算剩余功率预算:

9、选择QEandQF

为设计选择FETs总是尝试和错误。

我们以满足电力需求的设计选择75v,120A-FETs,从Fairchild,型号FDP032N08。

这些FETs的下面特征。

计算场效应晶体管平均输出电容(COSS_QE_AVG),基于数据表参数输出电容(COSS_SPEC)、从COSS_SPEC上测量的(Vds_spec)和最大的漏源电压在设计(VdsQE)将被应用到应用程序中的场效应晶体管。

当QEQF关断时,电压场效应晶体管的电压:

测试数据表上从场效应晶体管输出电容上指定的电压:

从场效应晶体管数据表上制定的输出电容:

QEQF上平均输出电容

QEQF均方根电流

为了估计场效应晶体管开关损耗场效应,晶体管的Vg和Qg曲线数据表需要研究。

首先是millerplateau开始时的gatecharge需要确定(QEMILLER_MIN)结束时的gatecharge(QEMILLER_MAX)为了给定的VDS。

这个FETs设计是为了驱动UCC27324的4-A(IP)门限驱动电流

估计场效应晶体管Vds上升和下降时间:

估计QEQF的损失

重新计算功率预算

10、输入电容(CIN)

如果这个转换器是设计用来390v输入,通常由PFC的输出增加pre-regulator。

选择的输入电容通常是基于交通阻塞和纹波的要求。

注意:

实现零电压所需的延迟时间可以作为一种责任周期夹(DCLAMP)。

计算槽频率:

预计延迟时间:

有效工作周期夹(DCLAMP):

VDROP是最低输入电压当转换器仍然可以保持输出调节。

转换器的输入电压只会拉低电压不足或line-drop条件,如果在这转换器是PFCpre-regulator后。

CIN计算基于一种稳态周期循环

计算高频输入电容器均方根电流(ICINRMS)。

为满足该设计的输入电容和均方根电流要求,我们选择330-μf电容器从松下EETHC2W331EA

这个电容器高频(ESRCIN)150mΩ,这是测量阻抗分析仪在120Hz和200Hz下测量的。

计算CIN功率损耗

重新计算剩余功率预算:

有大约6.0W的功率预算离开电流传感网络,和偏置控制设备和所有电阻支持控制装置。

 

11、设置电流传感网络CT,RS,RRE,DA

为这个设计有一个选择的CT的100:

1比率(a2)

在VINMIN下计算一般峰值电流(IP1):

原边电流峰值:

峰值电流达到上限时的电压

计算电流检测电阻(RS)并且预留200mV斜坡补偿:

选择一个标准电阻RS:

对RS估计功率损耗:

计算DA上的最大反向电压(VDA)

估计达功率损耗(PDA):

计算RS重置电阻器RRE:

电阻器RRE用于重置当前变压器CT。

电阻器RLF和电容器CLF形成一个低通滤波器对当前信号(引脚15)。

对于这个设计我们选择以下值。

这个过滤器频率极低(fLFP)在482千赫。

这应该工作大多数应用程序但也许适合个体的布局调整和EMI的设计。

UCC28950VREF输出(引脚1)需要高频旁路电容滤除高频噪音。

这个引脚需要至少1μF高频旁路电容(CBP1)。

请参考图1适当的位置。

电压放大器参考电压(引脚2,EA+)可以设置与分压器(RA,RB),这个设计实例我们要设置误差放大器参考电压(V1)2.5v.选择一个标准电阻RB值,然后计算电阻RA值。

设置电压放大器参考电压:

分压器由电阻器RC和RI选择,设置直流输出电压(电压输出)引脚3(EA)。

选择一个标准电阻器RC:

计算R1

然后选择一个标准的电阻:

补偿反馈回路可以通过适当选择反馈组件

(RF、CZ和CP)。

这些组件被放置尽可能接近UCC28950引脚3和4。

计算负载阻抗负载(RLOAD):

10%

控制输出传递函数近似(GCO(f))作为频率的函数:

双极GCO频率(f):

补偿电压回路2型反馈网络。

下面的传递函数补偿增益作为频率的函数(GC(f))。

请参阅图1为组件的位置。

计算电压回路反馈电阻器(RF)基于交叉电压(fC)循环在第10个双极频率(fPP)。

选择一个标准电阻RF。

计算反馈电容器(CZ)在交叉点的移相。

选择一个设计标准电容值。

在2被FC的地方放置一个极点

选择一个设计标准电容值。

环路增益作为频率的函数,以dB的形式。

环路增益和相位图形检查循环稳定性理论循环。

(图4)得了在约3.7kHz的阶段大于90度。

注意:

明智的做法是检查你的循环稳定性和瞬态测试和/或最终设计网络分析仪和调整补偿(GC(f))必要的反馈。

限制在上升期间启动UCC28950有软启动功能(引脚5),应用程序设置软启动时间15ms(tSS)。

选择一个标准电容器的设计。

本应用笔记提供了一个固定延迟方法实现零电压从100%负荷降至50%负载。

当转换器操作低于50%加载转换器将在山谷切换操作。

为了实现零电压切换开关节点上QBd的FETsQA的开机(tABSET)延迟,初步制定和QB需要基于LS和理论开关节点之间的交互电容。

下面的方程用于设置tABSET最初。

将LS设置输出电容的两倍

计算槽频率:

设置初始tABSET延迟时间,适当调整计划。

注意:

2.25tABSET方程的因素来源于实证测试数据,可能会有所不同基于个人设计差异。

形成的电阻分压器RDA1RDA2决定tABSET,tCDSETUCC28950的延迟围。

选择一个标准RDA1电阻值。

注意:

tABSET之间可以编程30ns-1000ns。

电压的ADLE输入UCC28950(VADEL)需要设置RDA2基于以下条件。

如果tABSET>155ns设置VADEL=0.2V,tABSET155ns和1000ns之间可以编程:

如果tABSET≤155ns设置VADEL=1.8V,tABSET可以编程2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1