高中三角函数公式大全-必背知识点.doc
《高中三角函数公式大全-必背知识点.doc》由会员分享,可在线阅读,更多相关《高中三角函数公式大全-必背知识点.doc(4页珍藏版)》请在冰豆网上搜索。
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=
tan(A-B)=
cot(A+B)=
cot(A-B)=
倍角公式
tan2A=
Sin2A=2SinA•CosA
Cos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式
sin3A=3sinA-4(sinA)3
cos3A=4(cosA)3-3cosA
tan3a=tana·tan(+a)·tan(-a)
半角公式
sin()=
cos()=
tan()=
cot()=
tan()==
和差化积
sina+sinb=2sincos
sina-sinb=2cossin
cosa+cosb=2coscos
cosa-cosb=-2sinsin
tana+tanb=
积化和差
sinasinb=-[cos(a+b)-cos(a-b)]
cosacosb=[cos(a+b)+cos(a-b)]
sinacosb=[sin(a+b)+sin(a-b)]
cosasinb=[sin(a+b)-sin(a-b)]
诱导公式
sin(-a)=-sina
cos(-a)=cosa
sin(-a)=cosa
cos(-a)=sina
sin(+a)=cosa
cos(+a)=-sina
sin(π-a)=sina
cos(π-a)=-cosa
sin(π+a)=-sina
cos(π+a)=-cosa
tgA=tanA=
万能公式
sina=
cosa=
tana=
其他
a•sina+b•cosa=×sin(a+c)[其中tanc=]
a•sin(a)-b•cos(a)=×cos(a-c)[其中tan(c)=]
1+sin(a)=(sin+cos)2
1-sin(a)=(sin-cos)2
非重点三角函数
csc(a)=
sec(a)=
双曲函数
sinh(a)=
cosh(a)=
tgh(a)=
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
±α及±α与α的三角函数值之间的关系:
sin(+α)=cosα
cos(+α)=-sinα
tan(+α)=-cotα
cot(+α)=-tanα
sin(-α)=cosα
cos(-α)=sinα
tan(-α)=cotα
cot(-α)=tanα
sin(+α)=-cosα
cos(+α)=sinα
tan(+α)=-cotα
cot(+α)=-tanα
sin(-α)=-cosα
cos(-α)=-sinα
tan(-α)=cotα
cot(-α)=tanα
(以上k∈Z)
公式表达式
乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系X1+X2=-b/aX1*X2=c/a注:
韦达定理
判别式b2-4a=0注:
方程有相等的两实根
b2-4ac>0注:
方程有一个实根
b2-4ac<0注:
方程有共轭复数根
三角函数公式
两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
这两式相加或相减,可以得到2组积化和差:
相加:
cosAcosB=[cos(A+B)+cos(A-B)]/2
相减:
sinAsinB=-[cos(A+B)-cos(A-B)]/2
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB-sinBcosA
这两式相加或相减,可以得到2组积化和差:
相加:
sinAcosB=[sin(A+B)+sin(A-B)]/2
相减:
sinBcosA=[sin(A+B)-sin(A-B)]/2
这样一共4组积化和差,然后倒过来就是和差化积了
不知道这样你可以记住伐,实在记不
3.三角形中的一些结论:
(1)tanA+tanB+tanC=tanA·tanB·tanC
(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1
(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC
(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1
...........................
已知sinα=msin(α+2β),|m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ
解:
sinα=msin(α+2β)
sin(a+β-β)=msin(a+β+β)
sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ
sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)
tan(α+β)=(1+m)/(1-m)tanβ