PCB布局原则.docx

上传人:b****7 文档编号:10317110 上传时间:2023-02-10 格式:DOCX 页数:13 大小:30.91KB
下载 相关 举报
PCB布局原则.docx_第1页
第1页 / 共13页
PCB布局原则.docx_第2页
第2页 / 共13页
PCB布局原则.docx_第3页
第3页 / 共13页
PCB布局原则.docx_第4页
第4页 / 共13页
PCB布局原则.docx_第5页
第5页 / 共13页
点击查看更多>>
下载资源
资源描述

PCB布局原则.docx

《PCB布局原则.docx》由会员分享,可在线阅读,更多相关《PCB布局原则.docx(13页珍藏版)》请在冰豆网上搜索。

PCB布局原则.docx

PCB布局原则

PCB布局原则

2009-12-1109:

07

整体布局主要有如下的一些要求:

流向原则

按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向,输入在左边,输出在右边;或者以每个功能电路的核心元件为中心,围绕它来进行布局。

最近相邻原则

布局的最重要的原则之一是保证布线的布通率,移动器件时要注意网线的连接,把有网线关系的器件放在一起,而且能大致达成互连最短,要注意如果两个器件有多个网线的连接时要通过旋转来使网线的交叉最少。

均布原则

放置器件时要考虑以后的焊接,不要太密集,元件分布要尽可能均匀,例如大的器件再流焊时热容量比较大,过于集中容易使局部温度低而造成虚焊。

抗干扰原则

这涉及的知识点就比较丰富了,如数字器件和模拟器件要分开,尽量远离;尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰,易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离;去耦电容尽量靠近器件的VCC,贴片器件的退耦电容最好在布在板子另一面的器件肚子位置等,这一原则涉及到的很多方面都是依靠经验来进行的,读者可以参阅后面关于可靠性设计一章。

热效应原则

1:

发热元器件应尽可能远离其它元器件,一般放置在边角,机箱内通风位置,发热器件一般都要用散热片,所以要考虑留出合适的空间安装散热片,此外发热器件的发热部位与印制电路板的距离一般不小于2mm。

2:

对温度敏感的元器件要远离发热元器件。

易维修原则

大型器件的四周要留出一定的维修空间(留出SMD返修设备加热头能够进行操作的尺寸),需要经常更换的元件应置于便于更换的位置,如保险管等。

易调节原则

对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求,若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。

抵抗受力原则

固定孔一般放在接线端子、插拔器件、长串端子等经常受力作用的器件中央,并留出相应的空间;重量超过15g的元器件、应当用支架加以固定,然后焊接。

易组装原则

按照这个原则,衍生出来的要求就有很多,例如:

1、在大面积PCB设计中(大约超过500cm2以上),为防止过锡炉时PCB板弯曲,应在PCB板中间留一条5至10MM宽的空隙不放元器件(可走线),以用来在过锡炉时加上防止PCB板弯曲的压条;

2、上锡位不能有丝印油,否则容易造成虚焊或焊不上;

3、布局时,DIP封装的IC摆放的方向必须与过锡炉的方向成垂直,不可平行,如果布局上有困难,可允许水平放置IC(SMD封装的IC摆放方向与DIP相反);

4、片式元件长轴应垂直于再流焊炉传送带的方向,即垂直于PCB板的长边(因为一般PCB板的长边平行于再流焊炉传送带的方向;

5、对于使用波峰焊工艺的元件组装,为了避免阴影效果,同尺寸元件的端头在平行于焊波方向排成一条直线,不同尺寸的大小元件应交错放置;小尺寸的元件排在大尺寸元件前(无互相遮挡原则);

6、元器件的特征方向一般要求一致,例如电解电容的极性,二极管的正极,三极管的单引脚端,集成电路的第一个引脚等;

7、波峰焊接面上元器件封装必须能承受260度以上温度并是全密封型的;

8、采用A面再流焊,B面波焊混装时,应把大的贴装和插装元器件布放在A面(再流焊),适合于波峰焊的矩形、圆柱形片式元件、SOT和较小的SOP(引脚数小于28,引脚间距1MM以上)布放在B面(波峰焊接面)。

波峰焊接面上不能安放四边有引脚的器件,如,QEP、PLCC等;

8、留出印制扳定位孔及固定支架所占用的位置;

9、外接的设备是否利于介入,如插件板插入设备是否方便等。

安全原则

例如带高电压的元器件应尽量布置在调试时手不易触及的地方,某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路造成火灾。

其它原则

其它原则一般都是根据实际的需求和经验进行的,例如位于电路板边缘的元器件,离电路板边缘一般不小于2mm;跳线不要放在IC下面或马达、电位器以及其它大体积金属外壳的元件下;螺丝孔半径5.0MM内不能有铜箔(除要求接地外)及元件;贵重的元器件不要放在PCB的角、边缘,或靠近接插件、安装孔、槽、拼板的切割、豁口和拐角等处,以上这些位置是印制板的高应力区,容易造成焊点和元器件的开裂或裂纹等。

最后还要考虑整体的美观性等,一个成熟的产品不但要注重内在质量,还要同时兼顾整体的美观。

------------------------------------------

PCB板布局原则

1.元件排列规则

1).在通常条件下,所有的元件均应布置在印制电路的同一面上,只有在顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴IC等放在底层。

2).在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,一般情况下不允许元件重叠;元件排列要紧凑,输入和输出元件尽量远离。

3).某元器件或导线之间可能存在较高的电位差,应加大它们的距离,以免因放电、击穿而引起意外短路。

4).带高电压的元件应尽量布置在调试时手不易触及的地方。

5).位于板边缘的元件,离板边缘至少有2个板厚的距离

6).元件在整个板面上应分布均匀、疏密一致。

2.按照信号走向布局原则

1).通常按照信号的流程逐个安排各个功能电路单元的位置,以每个功能电路的核心元件为中心,围绕它进行布局。

2).元件的布局应便于信号流通,使信号尽可能保持一致的方向。

多数情况下,信号的流向安排为从左到右或从上到下,与输入、输出端直接相连的元件应当放在靠近输入、输出接插件或连接器的地方。

3.防止电磁干扰

1).对辐射电磁场较强的元件,以及对电磁感应较灵敏的元件,应加大它们相互之间的距离或加以屏蔽,元件放置的方向应与相邻的印制导线交叉。

2).尽量避免高低电压器件相互混杂、强弱信号的器件交错在一起。

3).对于会产生磁场的元件,如变压器、扬声器、电感等,布局时应注意减少磁力线对印制导线的切割,相邻元件磁场方向应相互垂直,减少彼此之间的耦合。

4).对干扰源进行屏蔽,屏蔽罩应有良好的接地。

5).在高频工作的电路,要考虑元件之间的分布参数的影响。

4.抑制热干扰

1).对于发热元件,应优先安排在利于散热的位置,必要时可以单独设置散热器或小风扇,以降低温度,减少对邻近元件的影响。

2).一些功耗大的集成块、大或中功率管、电阻等元件,要布置在容易散热的地方,并与其它元件隔开一定距离。

3).热敏元件应紧贴被测元件并远离高温区域,以免受到其它发热功当量元件影响,引起误动作。

4).双面放置元件时,底层一般不放置发热元件。

5.可调元件的布局

   对于电位器、可变电容器、可调电感线圈或微动开关等可调元件的布局应考虑整机的结构要求,若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应;若是机内调节,则应放置在印制电路板于调节的地方。

------------------------

在设计中,布局是一个重要的环节。

布局结果的好坏将直接影响布线的效果,因此可以这样认为,合理的布局是PCB设计成功的第一步。

 布局方式分两种,一种是交互式布局,另一种是自动布局,一般是在自动布局的基础上用交互式布局进行调整,在布局时还可根据走线的情况对门电路进行再分配,将两个门电路进行交换,使其成为便于布线的最佳布局。

在布局完成后,还可对设计文件及有关信息进行返回标注于原理图,使得PCB板中的有关信息与原理图相一致,以便在今后的建档、更改设计能同步起来,同时对模拟的有关信息进行更新,使得能对电路的电气性能及功能进行板级验证。

  考虑整体美观

  一个产品的成功与否,一是要注重内在质量,二是兼顾整体的美观,两者都较完美才能认为该产品是成功的。

  在一个PCB板上,元件的布局要求要均衡,疏密有序,不能头重脚轻或一头沉。

  布局的检查

印制板尺寸是否与加工图纸尺寸相符?

能否符合PCB制造工艺要求?

有无定位标记?

元件在二维、三维空间上有无冲突?

元件布局是否疏密有序,排列整齐?

是否全部布完?

需经常更换的元件能否方便的更换?

插件板插入设备是否方便?

热敏元件与发热元件之间是否有适当的距离?

调整可调元件是否方便?

在需要散热的地方,装了散热器没有?

空气流是否通畅?

信号流程是否顺畅且互连最短?

插头、插座等与机械设计是否矛盾?

  PCB布线经验

(一)

  这是个牵涉面大的问题。

抛开其它因素,仅就PCB设计环节来说,我有以下几点体会,供大家参考:

  1.要有合理的走向:

如输入/输出,交流/直流,强/弱信号,高频/低频,高压/低压等...,它们的走向应该是呈线形的(或分离),不得相互交融。

其目的是防止相互干扰。

最好的走向是按直线,但一般不易实现,最不利的走向是环形。

对于是直流,小信号,低电压PCB设计的要求可以低些。

所以“合理”是相对的。

上下层之间走线的方向基本垂直。

整个板子的不想要均匀,能不挤的不要挤在一齐。

  2.选择好接地点:

小小的接地点不知有多少工程技术人员对它做过多少论述,足见其重要性。

一般情况下要求共点地,如:

前向放大器的多条地线应汇合后再与干线地相连等等...。

现实中,因受各种限制很难完全办到,但应尽力遵循。

这个问题在实际中是相当灵活的。

每个人都有自己的一套解决方案。

如能针对具体的电路板来解释就容易理解。

  3.合理布置电源滤波/退耦电容:

一般在原理图中仅画出若干电源滤波/退耦电容,但未指出它们各自应接于何处。

其实这些电容是为开关器件(门电路)或其它需要滤波/退耦的件而设置的,布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。

有趣的是,当电源滤波/退耦电容布置的合理时,接地点的问题就显得不那么明显。

在贴片器件的退耦电容最好在布在板子另一面的器件肚子位置,电源和地要先过电容,再进芯片。

  4.线条有讲究:

有条件做宽的线决不做细;高压及高频线应园滑,不得有尖锐的倒角,拐弯也不得采用直角。

地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。

5.有些问题虽然发生在后期制作中,但却是PCB设计中带来的,它们是:

过线孔太多,沉铜工艺稍有不慎就会埋下隐患。

所以,设计中应尽量减少过线孔。

同向并行的线条密度太大,焊接时很容易连成一片。

所以,线密度应视焊接工艺的水平来确定。

焊点的距离太小,不利于人工焊接,只能以降低工效来解决焊接质量。

否则将留下隐患。

所以,焊点的最小距离的确定应综合考虑焊接人员的素质和工效。

焊盘或过线孔尺寸太小,或焊盘尺寸与钻孔尺寸配合不当。

前者对人工钻孔不利,后者对数控钻孔不利。

容易将焊盘钻成“c”形,重则钻掉焊盘。

导线太细,而大面积的未布线区又没有设置敷铜,容易造成腐蚀不均匀。

即当未布线区腐蚀完后,细导线很有可能腐蚀过头,或似断非断,或完全断。

所以,设置敷铜的作用不仅仅是增大地线面积和抗干扰。

以上诸多因素都会对电路板的质量和将来产品的可靠性大打折扣。

 PCB布线经验

(二)

  PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。

PCB布线有单面布线、双面布线及多层布线。

布线的方式也有两种:

自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。

必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。

  自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。

一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。

并试着重新再布线,以改进总体效果。

  对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。

  1电源、地线的处理

既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。

所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。

对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述:

  众所周知的是在电源、地线之间加上去耦电容。

  尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:

地线>电源线>信号线,通常信号线宽为:

0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5mm对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地不能这样使用)

  用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。

或是做成多层板,电源,地线各占用一层。

  2数字电路与模拟电路的共地处理

  现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。

因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。

  数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。

数字地与模拟地有一点短接,请注意,只有一个连接点。

也有在PCB上不共地的,这由系统设计来决定。

  3信号线布在电(地)层上

  在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。

首先应考虑用电源层,其次才是地层。

因为最好是保留地层的完整性。

  4大面积导体中连接腿的处理

  在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:

①焊接需要大功率加热器。

②容易造成虚焊点。

所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heatshield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。

多层板的接电(地)层腿的处理相同。

  5布线中网络系统的作用

  在许多CAD系统中,布线是依据网络系统决定的。

网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。

而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。

网格过疏,通路太少对布通率的影响极大。

所以要有一个疏密合理的网格系统来支持布线的进行。

标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54mm)或小于0.1英寸的整倍数,如:

0.05英寸、0.025英寸、0.02英寸等。

6设计规则检查(DRC)

  布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:

线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。

  电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?

在PCB中是否还有能让地线加宽的地方。

  对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。

  模拟电路和数字电路部分,是否有各自独立的地线。

  后加在PCB中的图形(如图标、注标)是否会造成信号短路。

  对一些不理想的线形进行修改。

在PCB上是否加有工艺线?

阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。

  多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。

 

PCB布局布线设计规范和要求

2009-12-2914:

52

一:

布局设计原则

1:

距板边距离应大于5mm

2:

先放置与结构关系密切的元件,如接插件,开关,电源插座等

3:

优先摆放电路功能块的核心元件及体积较大的元器件,再以核心元件为中心摆放周围电路元器件

4:

功率大的元件摆放在有利于散热的位置上

5:

质量较大的元器件应避免放在板的中心,应靠近机箱中的固定边放置

6:

有高频连线的元件尽可能靠近,以减少高频信号的分布和电磁干扰

7:

输入,输出元件尽量远离

8:

带高压的元器件尽量放在调试时手不易触及的地方

9:

热敏元件应远离发热元件

10:

可调元件的布局应便于调节

11:

考虑信号流向,合理安排布局使信号流向尽可能保持一致

12:

布局应均匀,整齐,紧凑

13:

SMT元件应注意焊盘方向尽量一致,以利于装焊,减少桥联的可能

14:

去藕电容应在电源输入端就近位置

15:

波峰焊面的元件高度限制为4mm

16:

对于双面都有的元件的PCB,较大较密的IC,插件元件放在板的顶层,底层只能放较小的元件和管脚数少且排列松散的贴片元件

17:

对小尺寸高热量的元件加散热器尤为重要,大功率元件下可以通过敷铜来散热,而且这些元件周围尽量不要放热敏元件.

18:

高速元件尽量靠近连接器;数字电路和模拟电路尽量分开,最好用地隔开,再单点接地

19:

定位孔到附近焊盘的距离不小于7.62mm(300mil),定位孔到表贴器件边缘的距离不小于5.08mm(200mil)

二:

布线设计原则

1:

线应避免锐角,直角,应采用四十五度走线

2:

相邻层信号线为正交方向

3:

高频信号尽可能短

4:

输入,输出信号尽量避免相邻平行走线,最好在线间加地线,以防反馈耦合

5:

双面板电源线,地线的走向最好与数据流向一致,以增强抗噪声能力

6:

数字地,模拟地要分开

7:

时钟线和高频信号线要根据特性阻抗要求考虑线宽,做到阻抗匹配

8:

整块线路板布线,打孔要均匀

9:

单独的电源层和地层,电源线,地线尽量短和粗,电源和地构成的环路尽量小

10:

时钟的布线应少打过孔,尽量避免和其他信号线并行走线,且应远离一般信号线,避免对信号线的干扰;同时避开板上的电源部分,防止电源和时钟互相干扰;当一块电路板上有多个不同频率的时钟时,两根不同频率的时钟线不可并行走线;时钟线避免接近输出接口,防止高频时钟耦合到输出的CABLE线并发射出去;如板上有专门的时钟发生芯片,其下方不可走线,应在其下方铺铜,必要时对其专门割地;

11:

成对差分信号线一般平行走线,尽量少打过孔,必须打孔时,应两线一起打,以做到阻抗匹配

12:

两焊点间距很小时,焊点间不得直接相连;从贴盘引出的过孔尽量离焊盘远些

PCB板布局布线技巧及原则

2009-10-2715:

15

一、元件布局基本规则

1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近

集中原则,同时数字电路和模拟电路分开;

2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于

M2.5)、4mm(对于M3)内不得贴装元器件;

3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体

短路;

4.元器件的外侧距板边的距离为5mm;

5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;

6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间

距应大于2mm。

定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;

7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;

8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。

特别

应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及

电源线缆设计和扎线。

电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;

9.其它元器件的布置:

所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出

现两个方向时,两个方向互相垂直;

10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);

11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。

重要信号线不准从插座脚间穿过;

12、贴片单边对齐,字符方向一致,封装方向一致;

13、有极性的器件在以同一板上的极性标示方向尽量保持一致。

二、元件布线规则

1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;

2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;

3、正常过孔不低于30mil;

4、双列直插:

焊盘60mil,孔径40mil;

1/4W电阻:

51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;

无极电容:

51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;

5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。

如何提高抗干扰能力和电磁兼容性

在研制带处理器的电子产品时,如何提高抗干扰能力和电磁兼容性?

1、下面的一些系统要特别注意抗电磁干扰:

(1)微控制器时钟频率特别高,总线周期特别快的系统。

(2)系统含有大功率,大电流驱动电路,如产生火花的继电器,大电流开关等。

(3)含微弱模拟信号电路以及高精度A/D变换电路的系统。

2、为增加系统的抗电磁干扰能力采取如下措施:

(1)选用频率低的微控制器:

选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。

同样频率的方波和正弦波,方波中

的高频成份比正弦波多得多。

虽然方波的高频成份的波的幅度,比基波小,但频率越高越容易发射出成为噪声

源,微控制器产生的最有影响的高频噪声大约是时钟频率的3倍。

(2)减小信号传输中的畸变

微控制器主要采用高速CMOS技术制造。

信号输入端静态输入电流在1mA左右,输入电容10PF左右,输入阻

抗相当高,高速CMOS电路的输出端都有相当的带载能力,即相当大的输出值,将一个门的输出端通过一段很

长线引到输入阻抗相当高的输入端,反射问题就很严重,它会引起信号畸变,增加系统噪声。

当Tpd>Tr时,

就成了一个传输线问题,必须考虑信号反射,阻抗匹配等问题。

信号在印制板上的延迟时间与引线的特性阻抗有关,即与印制线路板材料的介电常数有关。

可以粗略地认为,

信号在印制板引线的传输速度,约为光速的1/3到1/2之间。

微控制器构成的系统中常用逻辑电话元件的Tr(标

准延迟时间)为3到18ns之间。

在印制线路板上,信号通过一个7W的电阻和一段25cm长的引线,线上延迟时间大致在4~20ns之间。

也就是

说,信号在印刷线路上的引线越短越好,最长不宜超过25cm。

而且过孔数目也应尽量少,最好不多于2个。

当信号的上

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 职业教育 > 中职中专

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1