高考数学一轮复习知识点与练习平行与垂直的综合应用.docx

上传人:b****8 文档编号:10199160 上传时间:2023-02-09 格式:DOCX 页数:17 大小:172.69KB
下载 相关 举报
高考数学一轮复习知识点与练习平行与垂直的综合应用.docx_第1页
第1页 / 共17页
高考数学一轮复习知识点与练习平行与垂直的综合应用.docx_第2页
第2页 / 共17页
高考数学一轮复习知识点与练习平行与垂直的综合应用.docx_第3页
第3页 / 共17页
高考数学一轮复习知识点与练习平行与垂直的综合应用.docx_第4页
第4页 / 共17页
高考数学一轮复习知识点与练习平行与垂直的综合应用.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

高考数学一轮复习知识点与练习平行与垂直的综合应用.docx

《高考数学一轮复习知识点与练习平行与垂直的综合应用.docx》由会员分享,可在线阅读,更多相关《高考数学一轮复习知识点与练习平行与垂直的综合应用.docx(17页珍藏版)》请在冰豆网上搜索。

高考数学一轮复习知识点与练习平行与垂直的综合应用.docx

高考数学一轮复习知识点与练习平行与垂直的综合应用

1.证明方法

(1)证明平行关系的方法:

①证明线线平行的常用方法

a.利用平行公理,即证明两直线同时和第三条直线平行;

b.利用平行四边形进行转换;

c.利用三角形中位线定理证明;

d.利用线面平行、面面平行的性质定理证明.

②证明线面平行的常用方法

a.利用线面平行的判定定理,把证明线面平行转化为证线线平行;

b.利用面面平行的性质定理,把证明线面平行转化为证面面平行.

③证明面面平行的方法

证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行.

(2)证明空间中垂直关系的方法:

①证明线线垂直的常用方法

a.利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;

b.利用勾股定理逆定理;

c.利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可.

②证明线面垂直的常用方法

a.利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;

b.利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;

c.利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.

③证明面面垂直的方法

证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决.

2.应特别注意的几个易错点

定理

图形语言

易错点

等角定理

⇒∠AOB=∠A′O′B′

易忽略“方向相同”

线面平行的判定定理

⇒a∥α

易丢掉“a⊄α”或“b⊂α”

线面平行的性质定理

⇒a∥b

易忽略“α∩β=b”

直线和平面垂直的判定定理

⇒l⊥α

易忽略“a∩b=O”

两个平面垂直的性质定理

⇒a⊥β

易忽略“a⊂α”

面面平行的判定定理

⇒α∥β

易忽略“a∩b=O”

面面平行的判定定理的推论

⇒α∥β

易忽略“a∩b=O”或“c∩d=O′”

【思考辨析】

判断下面结论是否正确(请在括号中打“√”或“×”)

(1)若平面外一条直线上有两个点到平面的距离相等,则直线与平面平行.(  )

(2)若直线a∥α,P∈α,则过点P且平行于a的直线有无数条.(  )

(3)若a⊥b,b⊥c,则a∥c.(  )

(4)α,β,γ为三个不同平面,α∥β,β∥γ⇒α∥γ.(  )

(5)若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ.(  )

(6)α⊥β,a⊥β,b⊥α⇒a∥b.(  )

1.(教材改编)如图,已知平面α,β,且α∩β=AB,PC⊥α,垂足为C,PD⊥β,垂足为D,则直线AB与CD的位置关系是________.

2.已知正方体ABCD—A1B1C1D1中,E,F,G分别为B1C1,A1D1,A1B1的中点,则平面EBD与平面FGA的位置关系为________.

3.如图所示,边长为a的正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,下列命题中错误的是________.

①动点A′在平面ABC上的射影在线段AF上;②恒有平面A′GF⊥平面BCED;

③三棱锥A′—FED的体积有最大值;④异面直线A′E与BD不可能互相垂直.

4.已知点P是等腰三角形ABC所在平面外一点,且PA⊥平面ABC,PA=8,在△ABC中,底边BC=6,AB=5,则P到BC的距离为________.

5.(教材改编)如图,在三棱锥V—ABC中,∠VAB=∠VAC=∠ABC=90°,则平面VBA与平面VBC的位置关系为______________.

.

题型一 线、面平行垂直关系的判定

例1 

(1)如图所示,在直棱柱ABC—A1B1C1中,若D是AB的中点,则AC1与平面CDB1的关系为________.

①AC1∥平面CDB1;②AC1在平面CDB1中;

③AC1与平面CDB1相交;④无法判断关系.

(2)已知m,n为直线,α,β为平面,给出下列命题:

⇒n∥α;②

⇒m∥n;③

⇒α∥β;④

⇒m∥n.

其中正确的命题是________.

思维升华 对线面平行、垂直关系的判定:

(1)易忽视判定定理与性质定理的条件,如易忽视线面平行的判定定理中直线在平面外这一条件;

(2)结合题意构造或绘制图形,结合图形作出判断;(3)可举反例否定结论或用反证法判断结论是否正确.

 

(1)在正方形SG1G2G3中,E,F分别为G1G2,G2G3的中点.现在沿SE,SF及EF把这个正方形折成一个四面体,使点G1,G2,G3重合,记为点G,则SG与平面EFG的位置关系为________.

(2)已知三个平面α,β,γ.若α∥β,α∩γ=a,β∩γ=b,且直线c⊂β,c∥b.

①判断c与α的位置关系,并说明理由;

②判断c与a的位置关系,并说明理由.

 

题型二 平行与垂直关系的证明

命题点1 线面平行的证明

例2 在正方体ABCD—A1B1C1D1中,E,F分别为棱BC,C1D1的中点.求证:

EF∥平面BB1D1D.

 

命题点2 面面平行的证明

例3 如图所示,已知正方体ABCD—A1B1C1D1.

(1)求证:

平面A1BD∥平面B1D1C.

(2)若E,F分别是AA1,CC1的中点,求证:

平面EB1D1∥平面FBD.

 

命题点3 直线与平面垂直的证明

例4 如图,在多面体ABCDEF中,四边形ABCD是菱形,AC、BD相交于点O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,点G为BC的中点.

(1)求证:

OG∥平面EFCD;

(2)求证:

AC⊥平面ODE.

 

命题点4 面面垂直的证明

例5 如图所示,在正三棱柱ABC—A1B1C1中,E为BB1的中点,求证:

截面A1CE⊥侧面ACC1A1.

 

命题点5 平行、垂直的综合证明

例6 如图,四边形ABCD是正方形,DE⊥平面ABCD.

(1)求证:

AC⊥平面BDE;

(2)若AF∥DE,DE=3AF,点M在线段BD上,且BM=

BD,求证:

AM∥平面BEF.

 

思维升华 

(1)空间线面的位置关系的判定方法

①证明直线与平面平行,设法在平面内找到一条直线与已知直线平行,解答时合理利用中位线性质、线面平行的性质,或构造平行四边形,寻求比例关系确定两直线平行.

②证明直线与平面垂直,主要途径是找到一条直线与平面内的两条相交直线垂直.解题时注意分析观察几何图形,寻求隐含条件.

(2)空间面面的位置关系的判定方法

①证明面面平行,需要证明线面平行,要证明线面平行需证明线线平行,将“面面平行”问题转化为“线线平行”问题.

②证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.

 如图,四边形AA1C1C为矩形,四边形CC1B1B为菱形,且平面CC1B1B⊥平面AA1C1C,D,E分别为边A1B1,C1C的中点.

求证:

(1)BC1⊥平面AB1C;

(2)DE∥平面AB1C.

 

题型三 平行与垂直的应用

例7 (2015·安徽)如图,三棱锥PABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.

(1)求三棱锥PABC的体积;

(2)证明:

在线段PC上存在点M,使得AC⊥BM,并求

的值.

 

思维升华 

(1)利用平行关系可以转移点到面的距离,从而求几何体体积或解决关于距离的最值问题.

(2)对于存在性问题的证明与探索有三种途径:

途径一:

先猜后证,即先观察与尝试给出条件再证明;

途径二:

先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.

途径三:

将几何问题转化为代数问题,探索出命题成立的条件.

 如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=

,点F是PD的中点,点E是边DC上的任意一点.

(1)当点E为DC边的中点时,判断EF与平面PAC的位置关系,并加以证明;

(2)证明:

无论点E在边DC的何处,都有AF⊥EF;

(3)求三棱锥B—AFE的体积.

 

6.立体几何平行、垂直的证明问题

典例 (14分)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.

(1)求证:

平面ABE⊥平面B1BCC1;

(2)求证:

C1F∥平面ABE;

(3)求三棱锥E-ABC的体积.

 

证明线面平行问题

(一)

第一步:

作(找)出所证线面平行中的平面内的一条直线.

第二步:

证明线线平行.

第三步:

根据线面平行的判定定理证明线面平行.

第四步:

反思回顾.检测关键点及答题规范.

证明线面平行问题

(二)

第一步:

在多面体中作出要证线面平行中的线所在的平面.

第二步:

利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行;

第三步:

证明所作平面与所证平面平行.

第四步:

转化为线面平行.

第五步:

反思回顾,检查答题规范.

证明面面垂直问题

第一步:

根据已知条件确定一个平面内的一条直线垂直于另一个平面内的一条直线.

第二步:

结合已知条件证明确定的这条直线垂直于另一平面内的两条相交直线.

第三步:

得出确定的这条直线垂直于另一平面.

第四步:

转化为面面垂直.

第五步:

反思回顾,检查答题规范.

温馨提醒 

(1)证线面平行的方法:

①利用判定定理,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.②若要借助于面面平行来证明线面平行,则先要确定一个平面经过该直线且与已知平面平行,此目标平面的寻找方法是经过线段的端点作该平面的平行线.

(2)证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现,因此,在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化.

[方法与技巧]

1.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,其转化关系为

在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.

2.空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直最终达到目的,其转化关系为

在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.

[失误与防范]

1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.

2.线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.

3.在用线面垂直的判定定理证明线面垂直时,考生易忽视说明平面内的两条直线相交,而导致被扣分,这一点在证明中要注意.口诀:

线不在多,重在相交.

4.面面垂直的性质定理在立体几何中是一个极为关键的定理,这个定理的主要作用是作一个平面的垂线,在一些垂直关系的证明中,很多情况都要借助这个定理作出平面的垂线.注意定理使用的条件,在推理论证时要把定理所需要的条件列举完整,同时要注意推理论证的层次性,确定先证明什么、后证明什么.

A组 专项基础训练

(时间:

45分钟)

1.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:

①若α∥β,l⊂α,则l∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④若m,n是异面直线,m∥α,n∥α,且l⊥m,l⊥n,则l⊥α.其中真命题的序号是________.

 

2.已知平面α,β,直线m,n,给出下列命题:

①若m∥α,n∥β,m∥n,则α∥β;

②若α∥β,m∥α,n∥β,则m∥n;

③若m⊥α,n⊥β,m⊥n,则α⊥β;

④若α⊥β,m⊥α,n⊥β,则m⊥n.

其中是真命题的是________.(填写所有真命题的序号)

3.在四棱锥P—ABCD中,PA⊥底面ABCD,底面各边都相等,M是PC上一动点,当M满足是________时,平面MBD⊥平面ABCD.

4.如图,ABCD是空间四边形,E,F,G,H分别是四边上的点,且它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当EFGH是菱形时,AE∶EB=________.

5.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.

6.如图,四棱锥P—ABCD的底面ABCD是平行四边形,平面PBD⊥平面ABCD,PB=PD,PA⊥PC,CD⊥PC,O,M分别是BD,PC的中点,连结OM.

求证:

(1)OM∥平面PAD;

(2)OM⊥平面PCD.

 

7.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.

(1)证明:

平面ADC1B1⊥平面A1BE;

(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?

证明你的结论.

 

8.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是棱DD1,C1D1的中点.

(1)证明:

平面ADC1B1⊥平面A1BE;

(2)证明:

B1F∥平面A1BE;

(3)若正方体棱长为1,求四面体A1—B1BE的体积.

 

B组 专项能力提升

(时间:

25分钟)

9.在正四面体P—ABC中,D,E,F分别是AB,BC,CA的中点,给出下面三个结论:

①BC∥平面PDF;②DF⊥平面PAE;③平面PDF⊥平面ABC.

其中不成立的结论是________.(填写所有不成立的结论的序号)

10.如图,过四棱柱ABCD—A1B1C1D1的木块上底面内的一点P和下底面的对角线BD将木块锯开,得到截面BDEF.

(1)请在木块的上表面作出过点P的锯线EF,并说明理由;

(2)若该四棱柱的底面为菱形,四边形BB1D1D是矩形,试证明:

平面BDEF⊥平面ACC1A1.

 

11.如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2

,E,F分别是AB,PD的中点.

(1)求证:

AF∥平面PCE;

(2)求证:

平面PCE⊥平面PCD;

(3)求四面体PECF的体积.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 广告传媒

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1