浙教版七上数学教案全集章教案1.docx
《浙教版七上数学教案全集章教案1.docx》由会员分享,可在线阅读,更多相关《浙教版七上数学教案全集章教案1.docx(85页珍藏版)》请在冰豆网上搜索。
浙教版七上数学教案全集章教案1
(此文档为word格式,下载后您可任意编辑修改!
)
1.1从自然数到分数
一、教学目标:
1.回顾小学中关于“数”的知识;
2.理解自然数、分数的产生和发展的实际背景和必然性;
3.体验自然数与分数的意义和在计数、测量、排序、编号等方面的应用。
二、教学重点和难点
重点:
认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数作进一步的扩展。
难点:
本节的“合作学习”中的第2题学生不易理解。
三、教学手段
现代课堂教学手段
四、教学方法
启发式教学
五、教学过程
(一)自然数的由来和作用。
请阅读下面这段报道:
世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,计划在5年后建成通车,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,将是中国大陆的第一座跨海大桥。
你在这段报道中看到了哪些数?
它们都属于哪一类数?
在小学里我们已经学过自然数0,1,3,4,5…自然数是人类历史上最早出现的数。
自然数在计数和测量中有着广泛的应用,如5年后建成通车,日通车量为8万辆,全长36千米等。
人们还常常用自然数来给事物标号和排序,如城市的公共汽车路线,门牌号码,邮政编码,上述报道中的2003年,第一座跨还大桥等。
计数简单的理解,可以看成用来统计的结果的自然数。
而测量的结果的自然数是用工具测量。
让学生举出一些实际生活的例子,并说明这些自然数起的作用。
练习,并有学生回答,及时校对。
做一做:
下列语句中用到的数,哪些属于计数?
哪些表示测量结果?
哪些属于标号和排序?
(1)2002年全国共有高等学校2003所;
(2)小明哥哥乘1425次列车从北京到天津;
(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼。
(二)讲解分数的由来及应用。
在小学里,我们还学习了分数和小数,它们是由于测量和分配等实际需要而产生的。
在解答下列问题时,你会选用哪一类数?
为什么?
(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?
(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?
分数可以看作两个整数相除,例如,=35=0.6,=0.3,1.31=,0.0062==。
伴随着数的概念而来的是数的运算,数的运算是人们分析、判断和解决实际问题的重要手段。
完成“合作学习”(见课本)
你能帮小慧列出算式吗?
如果利用自然数怎样列算式?
用分数呢?
2、某市民政局举行一次福利彩票销售活动,销售总额度为4000万元。
其中发行成本占总额度的15%,1400万元作为社会福利资金,其余作为中奖着奖金。
(1)你能算出奖金总额是多少吗?
你是怎样算的?
(2)为了使福利资金提高10%,而发行的成本保持不变,有人提出把奖金总额减小6%。
你认为这个方案可行吗?
你是怎样获得结论的?
上面问题2中的第
(2)题可以用如下算式求解:
2000×6%-1400×10%=
算式中被减数小于减数,在这种情况下,能否进行运算?
能否用我们已经学过的自然数和分数来表示结果?
看来数还需作进一步的扩展。
目的:
一是让学生进一步体验数的运算是人们分析、判断、解决实际问题的重要工具;二是从解决实际问题的过程中让学生感受到,光有自然数和分数仍是不够的,数需作进一步的扩展。
(三)课堂小节
让学生谈谈学了本节课后,对数的认识和了解。
(1)自然数在实际应用中,有计数,测量结果,标号,排序的作用。
(2)分数在实际应用中,起着分配和测量结果的作用。
(四)布置作业
见作业本。
1.2有理数
一、教学目标
1.理解有理数产生的必然性、合理性及有理数的分类;
2.能辨别正、负数,感受规定正、负的相对性;
3.体验中国古代在数的发展方面的贡献。
二、教学重点和难点
重点:
有理数的概念
难点:
建立正数、负数的概念对学生来说是数学抽象思维一次重大飞跃。
三、教学手段
现代课堂教学手段
四、教学方法
启发式教学
五、教学过程
(一)从学生原有的认知结构提出问题
大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:
小学里学过的数可以分为三类:
自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.
为了表示一个人、两只手、……,我们用到整数1,2,……
4.87、……
为了表示“没有人”、“没有羊”、……,我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.
(二)师生共同研究形成正负数概念
某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.
现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.“运进”和“运出”,其意义是相反的.
同学们能举例子吗?
学生回答后,教师提出:
怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充.
教师小结:
同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
教师讲解:
什么叫做正数?
什么叫做负数?
强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.
(三)介绍有理数的有关概念。
1.给出新的整数、分数概念
引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。
2.给出有理数概念
整数和分数统称为有理数。
3.有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:
整数和分数.有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充.
教师小结:
按有理数的符号分为三类:
正有理数、负有理数和零。
并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:
分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.
(四)运用举例 变式练习
例 下列给出的各数,哪些是正数?
哪些是负数?
哪些是整数?
哪些是分数?
哪些是有理数?
-8.4,22,+,0.33,0,-,-9
课堂练习
见课本第8-9页
(五)小结
教师引导学生回答如下问题:
本节课学习了哪些基本内容?
学习了什么数学思想方法?
应注意什么问题?
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.
六、练习设计
1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.
2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?
3.在下列各数中,哪些是正数?
哪些是负数?
-3.6,-4,9651,-0.1.
4.如果-50元表示支出50元,那么+200元表示什么?
5.在以下说法中,正确的是[ ]
A.非负有理数就是正有理数
B.零表示没有,不是有理数
C.正整数和负整数统称为整数
D.整数和分数统称为有理数
6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?
7.一物体可以左右移动,设向右为正,问:
(1)向左移动12米应记作什么?
(2)“记作8米”表明什么?
七、教学后记
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.
从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.
在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.同时,教师的语言要尽量儿童化
1.3数轴
一、教学目标
1.理解数轴、相反数的概念;
2.掌握数轴的画法、数轴上的点与有理数的关系;
3.会用数轴上的点表示相反数,探索他们的位置关系;
4.感受数形结合与转化。
二、教学重点和难点
重点:
初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.
难点:
正确理解有理数与数轴上点的对应关系.
三、教学手段
现代课堂教学手段
四、教学方法
启发式教学
五、教学过程
(一)从学生原有认知结构提出问题
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?
为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.
(二)讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:
利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:
我们能不能用这条直线表示任何有理数?
(可列举几个数)
在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.
进而提问学生:
在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?
如果单位长度改变呢?
如果直线的正方向改变呢?
通过上述提问,向学生指出:
数轴的三要素——原点、正方向和单位长度,缺一不可.
(三)运用举例 变式练习
例1 指出数轴上A,B,C,D,E各点分别表示什么数.
例2 画一个数轴,并在数轴上画出表示下列各数的点:
(1)0.5,-,0,-0.5,-4,,1.4;
(2)200,-150,-50,100,-100.
想一想:
-4与4有什么相同和不同之处?
它们在数轴上的位置有什么关系?
-与,-0.5与0.5呢?
(四)介绍相反数的概念和性质。
如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
比如,-的相反数是,4是-4的相反数。
注意,零的相反数是零。
观察归纳得到相反数性质:
在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。
例如,表示-100和100的点分别位于原点的左侧和右侧,到原点的距离都是100个单位长度。
例:
求5,0,-的相反数,并把这些数及其相反数表示在数轴。
课堂练习
见课本第12-13页
最后引导学生得出结论:
正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
(四)小结
指导学生阅读教材后指出:
数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
六、练习设计
1.在下面数轴上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)A,H,D,E,O各点分别表示什么数?
2.在下面数轴上,A,B,C,D各点分别表示什么数?
3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0};
(2){-4,2.5,-1.5,3.5};
七、教学后记
从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:
把射线怎样做些改进就可以用来表示有理数?
伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:
在数轴上对应一亿万分之一的点,你能画出来吗?
它是不是存在等.
1.4绝对值
一、教学目标
1.理解绝对值的概念与几何意义;
2.会求一个数的绝对值(不涉及字母)及绝对值等于某一正数的有理数;
3.探索绝对值的简单应用。
二、教学重点和难点
重点:
正确理解绝对值的概念
难点:
绝对值的实际意义是什么?
为什么它是正数或零?
这些问题学生不好理解,因此,绝对值的概念也是难点。
三、教学手段
现代课堂教学手段
四、教学方法
启发式教学
五、教学过程
(一)从学生原有的认知结构提出问题
1、下列各数中:
+7,-2,,-8.3,0,+0.01,-,1,哪些是正数?
哪些是负数?
哪些是非负数?
2、什么叫做数轴?
画一条数轴,并在数轴上标出下列各数:
-3,4,0,3,-1.5,-4,,2
3、问题2中有哪些数互为相反数?
从数轴上看,互为相反数的一对有理数有什么特点?
4、怎样表示一个数的相反数?
(二)师生共同研究形成绝对值概念
例1两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米。
这样,利用有理数就可以明确表示每辆汽车在公路上的位置了。
我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向。
当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离)这里的5叫做+5的绝对值,4叫做-4的绝对值。
例2两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,甲测得的结果是1.01米,乙侧得的结果是0.98米,甲测量的差额即多出的数记作+0.01米,乙测量的差额即减少的数记作-0.02米。
如果不计测量结果是多出或减少,只考虑测量误差,那么他们测量的误差分别是0.01和0.02,这里所说的测量误差也就是测量结果所多出来或减少了的数+0.01和-0.02绝对值。
如果请有经验的老师傅进行测量,结果恰好是1米,我们用有理数来表示测量的误差,这个数就是0(也可以记作+0或-0),自然这个差额0的绝以值是0现在我们撇开例题的实际意义来研究有理数的绝对值,那么,
+5的绝对值是5,在数轴上表示+5的点到原点的距离是5;
-4的绝对值是4,在数轴上表示-4的点到原点的距离是4;
+0.01的绝对值是0.01,在数轴上表示+0.01的点到原点的距离是0.01;
-0.02的绝对值是0.02,在数轴上表示-0.02的点它到原点的距离是0.02;
0的绝对值是0,表明它到原点的距离是0
一般地,一个数a的绝对值就是数轴上表示a的点到原点的距离
为了方便,我们用一种符号来表示一个数的绝对值,约定在一个数的两旁各画一条竖线来表示这个数的绝对值。
如
+5的绝对值记作|+5|,显然有|+5|=5;
-0.02的绝对值记作|-0.02|,显然有|-0.02|=0.02;
0的绝对值记作|0|,也就是|0|=0
a的绝对值记作|a|,(提醒学生a可以是正数,也可以是负数或0)
求下列各数的绝对值:
-1.6,,0,-10,+10.
由例3学生自己归纳出:
一个正数的绝对值是它本身;
一个负数的绝对值是它的相反数;
0的绝对值是0
这也是绝对值的代数定义,把绝对值的代数定义用数学符号语言如何表达?
把文字叙述语言变换成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步
1、用a表示一个数,如何表示a是正数,a是负数,a是0?
由有理数大小比较可以知道:
a是正数:
a>0;a是负数:
a<0;a是0:
a=0
2、怎样表示a的本身,a的相反数?
a的本身是自然数还是a,a的相反数为-a.
现在可以把绝对值的代数定义表示成
如果a>0,那么=a;如果a<0,那么=-a;如果a=0,那么=0
由绝对值的代数定义,我们可以很方便地求已知数的绝对值了
练习:
求8,-8,,-,0,6,-π,π-5的绝对值
例4求绝对值等于4的数。
分析:
因为数轴到原点的距离等于4个单位长度的点有两个,即表示+4的点和表示-4的点,所以绝对值等于4的数是+4和-4。
(三)课堂练习
1、下列哪些数是正数?
-2,,,,-,-(-2),-
2、计算下列各题:
|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;|-|×|-|;
|-|÷|-2|;÷|-|。
(四)小结
指导学生阅读教材,进一步理解绝对值的代数和几何意义
六、练习设计
1、填空:
(1)+3的符号是_____,绝对值是______;
(2)-3的符号是_____,绝对值是______;
(3)-的符号是____,绝对值是______;
(4)10-5的符号是_____,绝对值是______
2、填空:
(1)符号是+号,绝对值是7的数是________;
(2)符号是-号,绝对值是7的数是________;
(3)符号是-号,绝对值是035的数是________;
(4)符号是+号,绝对值是1的数是________;
3、
(1)绝对值是的数有几个?
各是什么?
(2)绝对值是0的数有几个?
各是什么?
(3)有没有绝对值是-2的数?
4、计算:
(1)|-15|-|-6|;
(2)|-0.24|+|-5.06|;(3)|-3|×|-2|;
(4)|+4|×|-5|;(3)|-12|÷|+2|;(6)|20|÷|-|
1.5有理数大小的比较
一、教学目标:
1.从生活实例中探索利用数轴比较有理数大小的规律;
2.通过观察、猜测、验证、概括用绝对值比较有理数大小的法则;
3.了解关于有理数大小比较的简单推理及书写。
二、教学重点和难点
重点:
比较有理数的大小的各条法则。
.
难点:
如何比较两个负数(尤其是两个负分数)的大小的绝对值法则。
.
三、教学手段
现代课堂教学手段
四、教学方法
启发式教学
五、教学过程
(一)、从学生原有的认识结构提出问题。
1.数轴怎么画?
它包括哪几个要素?
2.大于0的数在数轴上位于原点的哪一侧?
小于0的数呢?
(二)、师生共同探索利用数轴比较有理数大小的法则。
1、在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5℃在-2℃上边,5℃高于-2℃;-1℃在-4℃上边,-1℃高于-4℃.
下面的结论引导学生把温度计与数轴类比,自己归纳出来:
(1)在数轴上表示的两个数,右边的数总比左边的数大.
(2)正数都大于零,负数都小于零,正数大于负数。
2、运用举例,变式练习。
例1 观察数轴,能否找出符合下列要求的数,如果能,请写出符合要求的数:
(1)最大的正整数和最小的正整数;
(2)最大的负整数和最小的负整数;
(3)最大的整数和最小的整数;
(4)最小的正分数和最大的负分数.
在解本题时应适时提醒学生,直线是向两边无限延伸的.
3、课堂练习。
例2.在数轴上画出表示下列各数的点,并用“<”把它们连接起来。
4.5,6,-3,0,-2.5,-4
通过此例引导学生总结出“正数都大于0,负数都小于0,正数大于一切负数”的规律.要提醒学生,用“<”连接两个以上数时,小数在前,大数在后,不能出现5>0<4这样的式子.
(三)师生共同探索利用绝对值比较负数大小的法则。
1、利用数轴我们已经会比较有理数的大小。
由上面数轴,我们可以知道-4<-3<0.4<3,其中-4,-3都是负数,它们的绝对值哪个大?
显然>|—3|引导学生得出结论:
两个正数比较,绝对值大的数大;
两个负数比较,绝对值大的反而小。
这样以后在比较负数大小时就不必每次再画数轴了
2、运用举例变式练习。
例3、比较-4与-|—3|的大小
例4、已知a>b>0,比较a,-a,b,-b的大小
例5、比较-与-的大小
3、课堂练习
(1)比较下列每对数的大小:
与;|2|与;-与;与
(2)比较下列每对数的大小:
-与-;-与-;-与-;-与-
(四)、小结
先由学生叙述比较有理数大小的两种方法——利用数轴比较大小和利用绝对值比较大小,然后教师引导学生得出:
比较两个有理数的大小,实际上是由符号与绝对值两方面来确定,学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了。
(五)布置作业
六、练习设计
1.比较下列每对数的大小:
2.把下列各组数从小到大用“<”号连接起来:
(1)3,-5,-4;
(2)-9,16,-11;
3.下表是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列.
4、判断下列各式是否正确:
(1)|-0.1|<|-0.01|;
(2)|-|<;(3)<;(4)>-
5、较下列每对数的大小:
(1)-与-;
(2)-与-0273;(3)-与-;
(4)-与-;(5)-与-;(6)-与-
6、写出绝对值大于3而小于8的所有整数。
七、教学后记
在传授知识的同时,一定要重视学科基本思想方法的教学,关于这一点,布鲁纳有过精彩的论述,他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力,不但使数学学习变得容易,而且会使得别的学科容易学习,显然,按照布鲁纳的观点,数学教学