ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:32.40KB ,
资源ID:9839026      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9839026.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(世界经典数学名题.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

世界经典数学名题.docx

1、世界经典数学名题鸡兔同笼孙子算经卷下第31题叫“鸡兔同笼问题,也是一道世界数学名题。“有一群野鸡和兔子关在同一个笼子里,头数是35,脚数是94。问野鸡和兔子的数目各是多少?这个题目编得很有趣,如果35只动物全是鸡,就应该有70只脚;如果全是兔,就应该有140只脚,而题中却说共有94只脚,给人一种左右为难的印象。其实,解题关键也正在这里,假设35只动物全是鸡,如此共有70只脚,与题中“脚数是94相比拟,还差24只脚,将1只兔看作是鸡,脚数就会相差2,有多少只兔被看作是鸡了呢?24 2=12。 算到这里,答案也就呼之欲出了。清朝时,作家李汝珍把这类问题写进了小说镜花缘中。书中有这样一个情节,一座楼

2、阁到处挂满了五彩缤纷的大小灯球,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个。一位才女把大灯看作是头,小灯看作是脚;把一种灯球看作是鸡,把另一种看作是兔,运用“脚数的一半减头数得兔数,头数减兔数得鸡数的算法,很快就算出了一大二小的灯是120盏,一大四小的灯是240盏,赢得了一片喝彩声。伴随古代中外文化交流,鸡兔同笼问题很快就漂洋过海流传到了日本。不过到了日本之后,鸡变成了仙鹤,兔变成了乌龟,鸡兔同笼变成了赫赫有名的“鹤龟算。狗跑与兔跳行程问题是中小学里常见的一类数学应用题,也是一类很古老的数学问题。在我国古代数学名著九章算术里,收集了很多这方面的题目如书中

3、第6章第14题:“狗追兔子。兔子先跑100步,狗只追了250步便停了下来,这时它离兔子只有30步的距离了。问如果狗不停下来,还要跑多少步才能追上兔子?这道追与问题编得很有趣,它没有直接告诉狗与兔的“速度差,反而节外生枝地让狗在追与过程中停了下来,数量关系显得扑朔迷离。2000年前,我们的祖先解决这类问题已经很有经验了,所以书中只是简单地说,用250 30作除数,用100-30作被除数,即可算出题目的答案。世界各国人民都很喜爱解答这类问题,一本公元8世纪时在欧洲很流行的习题集中,也记载了一个狗与兔的追与问题:“狗追兔子,兔子在狗前面100英尺。兔子跑7英尺的时间狗可以跑9英尺,问狗跑完多少英尺才

4、能追上兔子?相传俄国女数学家科瓦列夫斯卡娅还在童年时,就算出了一道有关兔跳的趣味算题:“一对兔兄弟进展跳跃比赛,兔弟弟说:应该让它先跳10次,哥哥才可以起跳。如果兔弟弟跳4次的时间兔哥哥能跳3次,兔哥哥跳5次的距离与兔弟弟跳7次的距离同样远,问兔哥哥要跳多少次才能追上呢?婆什迦罗的妙算婆什迦罗是12世纪印度最著名的数学家,他编的许多数学题被人称作“印度问题,在很多国家广泛流传,如:“某人对他的朋友说:如果你给我100枚铜币,我将比你富2倍。朋友回答说:你只要给我10枚铜币,我就比你富6倍。问两人各有多少铜币?就是其中一道著名的数学题。婆什迦罗发现了一种很巧妙的算法:设这个人有2x-100枚铜币

5、,他朋友有x+100枚铜币,因为这个人给朋友10枚铜币后,他的朋友将比他富6倍,于是有62x-100= x+100,解之得x=70即两人分别有40和170枚铜币。我国古代数学著作X邱建算经里有一个类似的题目:“有甲、乙两人携钱各不知其数,假如乙给甲十钱,如此甲比乙所多的是乙余数的5倍;假如甲给乙十钱,如此两人钱数相等。问甲、乙各有多少钱?更早些,希腊文集里已有了著名的“欧几里得问题的记载:“驴子和骡子驮着货物并排走在大路上,驴子不住地抱怨驮的货物太重,压得受不了。骡子对它说:你发什么牢骚啊!我驮的比你更重。如果你给我1口袋,我驮的货物就是你的2倍;而我给你1口袋,咱俩才刚好一般多。问驴子和骡子

6、各驮了几口袋货物?棋盘上的麦粒数印度古代有个国王天性爱玩,对国际象棋这种新发明的游戏尤其入迷,决定重赏它的发明人西萨班。西萨班指着棋盘对国王说:“陛下,请您在第1格里赏我1粒麦子,在第2格里赏我2粒麦子,在第3格里赏我4粒麦子,依此类推,每增加1格麦粒数就增加1倍,一直放满64个格子。国王哈哈大笑,觉得这点麦子简直算不了什么。可他不久就发现,即使把印度的麦子全都扛来,也远远无法兑现自己许下的诺言。西萨班要的麦粒是多少呢?这是一个有趣的等比例数列求和问题。因为每增加1格麦粒数就增加1倍,所以第1格里是1粒,第2格里是21粒,第三格里是22粒,奇特的墓志铭丢番图是古希腊最后一个大数学家。专家们认为

7、,现代解方程的根本步骤,如移项、合并同类项等等,丢番图根本上都道了。他对不定方程的研究尤其受人称赞,被西方数学家誉为这门数学分支的开山鼻祖。遗憾的是,关于他的生平,后人几乎一无所知,既不知道他生于何地,也不知道他卒于何时,幸亏他那段奇特的墓志铭,才知道他曾享有84岁的高龄。丢番图的墓志铭是一道谜语般的数学题:“过路人!这里埋着丢番图的骨灰。他生命的1/6是幸福的童年,生命的1/12是少年时期。又过了生命的1/7他才结婚,婚后5年有了1个孩子。这孩子活到他父亲一半的年纪便死去了。孩子死后,丢番图在深深的哀痛中活了4年,也完毕了尘世生涯。这段墓志铭写得太妙了。谁要想知道丢番图的年纪,就得解一个一元

8、一次方程;而这正好提醒前来瞻仰的人们,不要忘了丢番图所献身的事业。化圆为方问题公元前6世纪时,有位叫安拉克萨哥拉的古希腊学者,被他的政敌丢进了监狱。在牢房里他无事可干,整天思索着这样一个数学问题:“怎样用直尺和圆规作一个正方形,使它的面积与某个圆的面积相等?这就是著名的化圆为方问题。当然,安拉克萨哥拉没能解决这个问题。但他也不必为此感到羞愧,因为在他以后的2400多年里,许许多多比他更加优秀的数学家,也都未能解决这个问题。化圆为方看上去谁都能办到,实际上却谁也办不到,因而具有极大的魅力。15世纪时,连欧洲最杰出的艺术大师达芬奇也曾拿起直尺圆规,试图解决这个问题呢。年复一年,有关化圆为方的论文雪

9、片似地飞向各国科学院,多得叫数学家们无法审读,以致在1775年,巴黎科学院为了维持正常的工作秩序,不得不宣布不再审读这方面的论文。化圆为方的狂热终止于1882年,在这一年里,德国数学家林德曼证明了是一个超越数,从而在理论上论证了化圆为方是不可能由尺规作图法完成的。现在仍然有些青少年在尝试化圆为方,显然,这只会是白白浪费精力。立方倍积问题公元前5世纪时,一场大瘟疫凭空降临到古希腊的第罗斯岛上,夺去了许多人的生命,幸存的人们纷纷躲进神庙,祈求神灵保佑。神说:“你们想活命,就必须把庙中的祭坛加大1倍,并且不许改变它的形状。祭坛是个正方体,第罗斯人连夜加工,把祭坛的长、宽、高都加大了1倍,以为这样就满

10、足了神的要求。岂料瘟疫更加疯狂地蔓延开来,第罗斯人满腹狐疑,再次匍匐在神像前。神怒气冲冲地说:“这个祭坛是原来的8倍!第罗斯人没有方法,派人向当时最有名的学者柏拉图请教,不料他也解决不了这个问题故事中提到的这个数学问题,也是一个举世闻名的几何作图难题,叫立方倍积问题:“做一个立方体,使它的体积等于立方体的两倍。如果借助其他工具,解决这个问题是很容易的,古希腊的埃拉托斯芬、攸多克萨斯,英国的牛顿等人都曾发明过一些巧妙的方法,但是,如果限制用直尺和圆规去解决,2000年来,无论是初学几何的少年,还是天才的数学大师,却无一不束手无策。1837年,又是法国数学家闻脱兹尔最先从理论上证明:同三等分角问题

11、一样,立方倍积问题也是不能由尺规作图法解决的,才了结了这桩数学悬案。三等分角问题在2000多年前,古希腊数学家苛刻地限制几何作图工具,规定画几何图形时,只准许使用直尺和圆规。于是,从一些本来很简单的作图题中,产生了一批举世闻名的数学难题。例如三等分角问题:“只使用直尺与圆规做一个角,使它等于一个角的1/3。大数学家阿基米德曾试图解决这个难题。他预先在直尺上作了一个记号,很轻松地将一个角分成了三等份。可是,人们不承认他解决了这个难题。因为古希腊人还规定:作图时直尺上不能有任何刻度,而且直尺与圆规都只允许使用有限次。三等分角看上去非常简单,做起来却非常难,几千年来,它激发了一代又一代的数学家。有人

12、说,在西方数学史上,几乎每一个称得上是数学家的人,都曾拿起直尺圆规,用三等分角测试过自己的智力,但谁也未能取得成功,直到1837年,法国数学家闻脱兹尔从理论上予以证明,只使用直尺圆规是无法三等分一个任意角的,才率先走出了这座困惑了无数人的数学迷宫。数图之谜现在世界上所能见到的最古老的数学文献,是古埃与的莱因特纸草书。书中记载了85个数学问题,在书写第79题的位置上,作者画了一个台阶,台阶旁依次写着7、49、343、2401和16807这5个数,书的旁边依次画有图、猫、老鼠、大麦、量器等字样,除此之外就没有别的什么东西了。由于这是书中唯一未明确给出答案的题目,后来,这个题目终究是什么意思,成了一

13、个有趣的谜。数学史学家康托尔猜出了这个谜,他认为题目的意思是:“有7个人,每个人养着7只猫,每只猫吃7只老鼠,每只老鼠吃7棵麦穗,每棵麦穗可以长成7个量器的大麦,问各有多少?经他这么一解释,书中给出的那5个数就正好成了题目的答案。有趣的是,在莱因特纸草书出土之前600多年,意大利数学家斐波拉契曾遍了一道很相似的数学题:“7位老太太一起到罗马去,每人有7匹骡子,每匹骡子驮7个口袋,每个口袋盛7个面包,每个面包有7把小刀,每把小刀有7个刀鞘。问各有多少?比斐波拉契还早几百年,我国古书里也记载了一个相似的数学题:“今有出门望有九隄,隄有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色

14、。问各几何?在不同的民族、不同的国家、不同的时间里,竟流传着一个同样的问题,这也是一个很有趣的谜。百蛋(外国古题)两个农民一共带了100只蛋到市场上去出卖。他们两人所卖得的钱是一样的。第一个人对第二个人说:“假假如我有象你这么多的蛋,我可以卖得15个克利采(一种货币名称)。第二个人说:“假假如我有了你这些蛋,我只能卖得6又三分之二个克利采。问他们俩人各有多少只蛋?和尚吃馒头(中国古题)大和尚每人吃4个,小和尚4人吃1个。有大小和尚100人,共吃了100个馒头。大、小和尚各几人?各吃多少馒头?洗碗(中国古题)有一位妇女在河边洗碗,过路人问她为什么洗这么多碗?她回答说:家中来了很多客人,他们每两人

15、合用一只饭碗,每三人合用一只汤碗,每四人合用一只菜碗,共用了碗65只。你能从她家的用碗情况,算出她家来了多少客人吗?算法统宗里的问题算法统宗是中国古代数学著作之一。书里有这样一题:甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧,牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的1/4,连你牵着的这只肥羊也算进去,才刚好凑满一百只。请您算算这只牧羊人赶的这群羊共有多少只?X立建算经里的问题X立建算经是中国古代算书。书中有这样一题:公鸡每只值5元,母鸡每只值3元,小鸡每三只值1元。现在用100元钱买100只鸡。问这100只鸡中,公鸡、母鸡、小鸡各有多少只?九章算

16、术里的问题九章算术是我国最古老的数学著作之一,全书共分九章,有246个题目。其中一道是这样的:一个人用车装米,从甲地运往乙地,装米的车曰行25千米,不装米的空车曰行35千米,5日往返三次,问二地相距多少千米?共有多少个桃子?著名美籍物理学家李政道教授来华讲学时,访问了中国科技大学,会见了少年班的局部同学。在会见时,给少年班同学出了一道题:“有五只猴子,分一堆桃子,可是怎么也平分不了。于是大家同意先去睡觉,明天再说。夜里一只猴子偷偷起来,把一个桃子扔到山下后,正好可以分成五份,它就把自己的一份藏起来,又睡觉去了。第二只猴子爬起来也扔了一个桃子,刚好分成五份,也把自己那一份收起来了。第三、第四、第

17、五只猴子都是这样,扔了一个也刚好可以分成五份,也把自己那一份收起来了。问一共有多少个桃子?注:这道题,小朋友们可能算不出来,如果我给增加一个条件,最后剩下1020个桃子,看谁能算出来。韩信点兵传说汉朝大将韩信用一种特殊方法清点士兵的人数。他的方法是:让士兵先列成三列纵队(每行三人),再列成五列纵队(每行五人),最后列成七列纵队(每行七人)。他只要知道这队士兵大约的人数,就可以根据这三次列队排在最后一行的士兵是几个人,而推算出这队士兵的准确人数。如果韩信当时看到的三次列队,最后一行的士兵人数分别是2人、2人、4人,并知道这队士兵约在三四百人之间,你能很快推算出这队士兵的人数吗?一笔画问题在18世

18、纪的哥尼斯堡城里有七座桥。当时有很多人想要一次走遍七座桥,并且每座桥只能经过一次。这就是世界上很有名的哥尼斯堡七桥问题。你能一次走遍这七座桥,而又不重复吗?(自己动手画画吧)埃与金字塔世界闻名的金字塔,是古代埃与国王们的坟墓,建筑雄伟高大,形状像个“金字。它的底面是正方形,塔身的四面是倾斜着的等腰三角形。两千六百多年前,埃与有位国王,请来一位名子叫法列士的学者测量金字塔的高度。法列士选择一个晴朗的天气,组织测量队的人来到金字塔前。太阳光给每一个测量队的人和金字塔都投下了长长的影子。当法列士测出自己的影子等于它自己的身高时,便立即让助手测出金字塔的阴影长度(cb)。他根据塔的底边长度和塔的阴影长

19、度,很快算出金字塔的高度。你会计算吗?数学家达兰倍尔错在哪里传说18世纪法国有名的数学家达兰倍尔有一次拿两个五分硬币往下扔,会出现几种情况呢?情况只有三种:可能两个都是正面;可能一个是正面,一个是背面,也可能两个都是背面。因此,两个都出现正面的概率是13。你想想,错在哪里?涡卡诺夫斯基的算术题一只狗追赶一匹马,狗跳六次的时间,马只能跳5次,狗跳4次的距离和马跳7次的距离一样,马跑了5.5公里以后,狗开始在后面追赶,马跑多长的距离,才被狗追上?托尔斯泰的算术题俄国伟大的作家托尔斯泰,曾出过这样一个题:一组割草人要把二块草地的草割完。大的一块比小的一块大一倍,上午全部人都在大的一块草地割草。下午一

20、半人仍留在大草地上,到傍晚时把草割完。另一半人去割小草地的草,到傍晚还剩下一块,这一块由一个割草人再用一天时间刚好割完。问这组割草人共有多少人?(每个割草人的割草速度都一样)马塔尼茨基的算术题有一个雇主约定每年给工人12元钱和一件短衣,工人做工到7个月想要离去,只给了他5元钱和一件短衣。这件短衣值多少钱多少蜜蜂公园里有甲、乙两种花,有一群蜜蜂飞来,在甲花上落下1/5,在乙花上落下1/3,如果落在两种花上的蜜蜂的差的三倍再落在花上,那么只剩下一只蜜蜂上下飞舞欣赏花香,算算这里聚集了多少蜜蜂?与时梨果元代数学家朱世杰于1303年编著的四元玉鉴中有这样一道题目:九百九十九文钱,与时梨果买一千,一十一

21、文梨九个,七枚果子四文钱。问:梨果多少价几何?此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。问买梨、果各几个,各付多少钱?两鼠穿墙我国古代数学典籍九章算术第七章“盈不足中有一道两鼠穿墙问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。大鼠日自倍,小鼠日自半。问何日相逢,各穿几何?今意是:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙。大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半。问几天后两鼠相遇,各穿几尺?隔壁分银只闻隔壁客分银,不知人数不知银,四两一份多四两,半斤一份少半斤。试问各位能算者,多少客人多少银?注:旧制1斤16两,半

22、斤8两李白打酒李白街上走,提壶去打酒遇店加一倍,见花喝一斗;三遇店和花,喝光壶中酒。试问酒壶中,原有多少酒?这是一道民间算题。题意是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次遇到花就喝去一斗斗是古代容量单位,1斗10升,这样遇店见花各3次,把酒喝完。问壶中原来有酒多少?“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。问物几何?题目的意思就是:有一些物品,不知道有多少个,只知道将它们三个三个地数,会剩下2个;五个五个地数,会剩下3个;七个七个地数,也会剩下2个。这些物品的数量至少是多少个?注:诗题与题目原文都无“至少二字,但“孙子问题都是些求“最少或者求“至

23、少的问题,否如此就会有无数多个答案。所以,解释题目意思时,在语句中加上了“至少二字。孙子算经解这道题目的“术文和答案是:“三三数之剩二,置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十。并之,得二百三十三,以二百十减之,即得。“答曰:二十三。这段话的意思是:先求被3除余2,并能同时被5、7整除的数,这样的数是140;再求被5除余3,并能同时被3、7整除的数,这样的数是63;然后求被7除余2,并能同时被3、5整除的数,这样的数是30。于是,由1406330=233,得到的233就是一个所要求得的数。但这个数并不是最小的。再用求得的“233减去或者加上3、5、7的最小公倍数“105的倍数,就得到许许多多这样的数:23,128,233,338,443,从而可知,23、128、233、338、443、都是这一道题目的解,而其中最小的解是23。其实由于三个三个地数和七个七个地数都是剩2个,由此可求出3、7的最小公倍数再加2,也就是23个。23也正好是五个五个地数多3个,所以这些物品的数目至少是23个。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1