ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:528.06KB ,
资源ID:9811706      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9811706.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(0PLC软硬件设计.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

0PLC软硬件设计.docx

1、0PLC软硬件设计 控制系统的总体设计方案1 系统的设计任务温室大棚的作用是调节植物生长的环境因素,从而避免四季的气候变化和恶劣气候对植物生长的不良影响,为植物提供一个良好的生长环境,促进植物的生长发育,防止病虫害,以达到增加产量的目的。温室中的温度、光照、湿度、CO2浓度、土壤酸碱度等因素对植物的生长起着重要作用。本设计的主要控制对象为温室中的温度、光照和二氧化碳浓度,应用温度传感器、光照度传感器和二氧化碳浓度传感器对各环境因子进行检测。温度的调节主要通过通风窗、加热器的动作来进行解决,光照度主要通过发光体和遮阳帘来调节,CO2浓度主要通过CO2添加器进行补偿。本温室控制系统就是依据室内外装

2、设的温度传感器、光照传感器、CO2传感器等采集或观测的温室内的温度、光照强度、CO2浓度等环境参数信息,通过控制设备对温室通风窗、加热器、发光体、遮阳帘、CO2添加器等执行机构的控制,对温室环境环境因素进行调节控制以达到栽培作物生长发育的需要,为作物生长发育提供最适宜的生态环境,以大幅度提高作物的产量和品质。2 系统的控制方案在温室大棚中,上述控制任务的实现需要有一套完善的硬、软件温室系统进行控制。该温室大棚控制系统以PLC为控制中心,采用传感器对温室温度、光照、二氧化碳浓度等环境因素进行测量,并将结果送到PLC中。由PLC对结果进行处理,然后调控各设备对环境因子进行补尝。考虑到实际生产生活中

3、的安全性与可靠性,本控制系统设有手动、自动两种工作模式,自动方式是指周期性地进行PLC控制的方式;而手动方式则是指在出现应急情况等一些突发事件时,通过手动操作控制执行器件的工作。自动工作中,如果被检测量温度高于设定值,PLC就会发出相应的指令控制开启通风窗和冷风机;如果测量值与设定值相等,则关闭通风窗和冷风机;如果测量值低于设定值,则打开加热器和热风机对温室进行加温。当温室的光照低于设定值时,系统打开遮阳帘或开启发光体;当温室的光照高于设定值时,系统关闭遮阳帘或发光体。当温室的二氧化碳浓度低于设定值,系统开启二氧化碳添加器。通过温度,光照和二氧化碳浓度的设定与调节达到适应不同植物生长的需求,从

4、而广泛应用到实际中。本设计的特点是成本低廉,节约资源,提高产量,实现经济价值最大化。该温室控制系统的总体框图如下所示。 图3-1 系统总体框图3 系统的工作原理该温室大棚控制系统由PLC系统、传感器系统、执行部件等几个部分组成。该温室控制系统以PLC为控制中心,通过温度传感器、光照传感器、二氧化碳浓度传感器采集温室中环境因子的有关参数,经变送转换为标准电流信号(420mA)后经由S7-200的模拟量输入模块EM235送入PLC控制器,PLC再通过PID控制算法将采集的参数与已设定的值进行分析处理,输出开关量,对执行机构进行控制。在此系统中还可以通过串口的形式与PC机相连,从而实现实时数据的管理

5、与存储,为以后植物生长的研究带来宝贵资料。 控制系统的硬件设计在掌握了PLC的硬件构成、工作原理、指令系统以及编程环境后,就可以以PLC作为主要控制器来构造PLC控制系统。PLC控制系统的设计主要包括硬件设计和软件设计两部分。本章主要从硬件设计角度进行温室控制系统的硬件设计方案,本章节主要介绍了该项目的电气控制系统设计、PLC硬件电路及外部配置设计。1 电气控制系统设计1.1 系统主电路设计 图4-1 系统主电路图系统的主电路如图所示,其中通风扇电机、遮阳帘电机(遮阳帘风机配有限位开关)除功率有所不同之外,需通过电机正转、反转和停止来完成相应机构的开启与闭合,因此它们的工作主电路相似。热风机、

6、冷风机、加热器、发光体、CO2添加器则属于开/关设备。QK为刀开关,用于控制整个主电路的启停;FU1FU7为熔断器,分别对各个分线路实施短路和过载保护;FR1FR5为热继电器,对电机、加热器起过载保护的作用。KM1KM9为交流接触器的主触头,用其实现电机的正反转、停止以及风机等开/关设备的启停控制。1.2 系统控制电路设计从系统主电路图中,可以看出执行机构系统包括遮阳帘、通风扇、热风机、冷风机、加热器、发光体和CO2添加器等部分。通常,温室的执行机构可分为两大类:一类是正反转运行电机,如通风扇、遮阳帘等,这些电机需要正转、反转和停止,必须有限位开关;另一类是开关控制设备,如风机、水泵等。一、正

7、反转设备通风扇、遮阳帘均属于正反转设备,其控制电路相似,现以遮阳帘为例,做以下介绍。1、遮阳帘主电路其电路中的熔断器FU2起到过电流保护的作用,热继电器FR2则是电机的过载保护,主要针对遮阳帘由于外界原因打不开或关闭不了的情况。而KM3、KM4在电路中起到控制电机正转与反转的功能,即遮阳帘的拉开与关闭。 图4-2 遮阳帘主电路图 2、遮阳帘控制电路 图4-3遮阳帘控制电路原理图遮阳帘控制电路原理图如图4-3所示,SB1为手动/自动的切换开关,SB2为总启动按钮,SB3为总停止按钮。按下总启动按钮SB2,交流接触器KM10的线圈得电,同时KM10的常开触点闭合,起自锁作用。在手动状态下,SB4为

8、开帘、关帘切换按钮,当SB4切换至开帘模式,交流接触器KM3的线圈得电,此时电机正转,遮阳帘打开,当遮阳帘开启到最大位置后触碰到限位开关SQ1,其常闭触点断开,KM3的线圈失电,电机停止转动;同理当SB4切换至关帘模式,遮阳帘关闭,到关闭的最大位置后,电机停转;按下按钮SB3,KM10的线圈失电,遮阳帘停止动作,用于急停操作。在自动状态下,由PLC控制器实现控制,中间接触器KM3的线圈得电时,其常开触点闭合,遮阳帘开启;中间接触器KM4的线圈得电时,其常开触点闭合,遮阳帘闭合。遮阳帘等正反转设备何时开启或闭合由硬件、算法和程序共同决定,在下面章节中将着重介绍。二、开/关设备 热风机、冷风机、加

9、热器、发光体、CO2添加器均属于开/关设备,其控制电路相似,现以热风机为例,做以下介绍。1、热风机主电路风机的运转主要由电机的通断来实现,可以由一个继电器来实现风机的控制,在电路中必须加有短路保护、过流保护、过载保护,而这些可以由热继电器、熔断器来实现电路中的保护。由以上要求可以设计如下的电路: 图4-4 热风机主电路图 热风机控制电路 图4-5 热风机控制电路图热风机控制电路原理图如图4-5所示,SB1为手动/自动的切换开关。按下按钮SB2,交流接触器KM10的线圈得电,同时KM10的常开触点闭合,起自锁作用。在手动状态下,SB6为启停旋钮。将旋钮SB6旋至启动状态,此时热风机运转;将旋钮S

10、B6旋至停止状态,热电机停止工作。在自动状态下,由PLC控制器实现控制,中间接触器KM5得电时,其常开触点闭合,热风机运行。热风机等开/关设备的启停同样由硬件、算法和程序共同决定,在下面章节中将作详细介绍。2 PLC硬件电路的设计2.1 PLC型号选择一、PLC的 I/O点数根据系统的控制要求,可确定系统所需的全部输入设备(如:按纽、限位开关、单刀双掷开关及各种传感器等)和输出设备(如:接触器、电磁阀、信号指示灯及其它执行器等),从而确定与PLC有关的输入/输出设备,最终确定PLC的I/O点数为14个数字量输入,10个数字量输出,3个模拟量输入。二、PLC的选型S7系列可编程控制器包括S7-2

11、00系列、S7-300系列和S7-400系列。其功能强大,分别应用于小型、中型和大型自动化系统。本控制系统采用德国西门子S7-200 PLC。S7-200系列PLC是西门子公司生产的一种小型整体式结构可编程序控制器。S7-200系列PLC广泛应用于集散自动化系统,使用范围覆盖机床、机械、电力设施、民用设施、环境保护设备等自动化控制领域,既可用于继电器简单控制的更新换代,又可实现复杂的自动化控制。因此S7-200系列具有极高的性能/价格比。S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU224XP、CPU226、CPU226XM等6种不同型号。其中CPU226集成24

12、输入/16输出共40个数字量I/O 点,可连接7个扩展模块,最大扩展至248路数字量I/O 点或35路模拟量I/O 点,具有13K字节程序和数据存储空间,6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器,2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。此控制系统的I/O点数为14输入9输出,在既能实现该系统控制要求,又能满足以后发展的前提下,选用的S7-200系列的 CPU226。2.2 PLC I/O地址分配根据系统的控制要求,控制系统的I/O地址如下表分配。表4-1 输入端口分配表 序号输入口信号名称备注符号0102030

13、405060708091011121314I0.0手动/自动切换旋钮SB1I0.1总启动按钮SB2I0.2总停止按钮SB3I0.3遮阳帘开限位限位开关SQ1I0.4遮阳帘关限位限位开关SQ2I0.5遮阳帘开帘单刀双掷开关SB4I0.6遮阳帘关帘单刀双掷开关SB4I0.7通风扇正转单刀双掷开关SB5I1.0通风扇反转单刀双掷开关SB5I1.1热风机启停旋钮SB6I1.2冷风机启停旋钮SB7I1.3加热器启停旋钮SB8I1.4补光灯启停旋钮SB9I1.5CO2添加器启停旋钮SB10151617AIW0温度传感器AIW2光照度传感器AIW4CO2浓度传感器表4-2 输出端口分配表序号输出口控制信号备

14、注符号01020304050607080910Q0.0通风扇正转接触器KM1Q0.1通风扇反转接触器KM2Q0.2遮阳帘开帘接触器KM3 Q0.3遮阳帘关帘接触器KM4Q0.4热风机接触器KM5Q0.5冷风机接触器KM6Q0.6加热器接触器KM7Q0.7补光灯接触器KM8Q1.0CO2添加器接触器KM9Q1.1启动指示灯接触器KM102.3 硬件接线图设计本次设计选用S7-200系列的CPU226,硬件接线图如图4-6所示。 图4-6 硬件接线图3 PLC的硬件配置3.1 传感器 一、温度传感器根据温室温度控制的特点,本文的温度传感器可采用芬兰维萨拉公司型号为HMD40的产品,该款传感器具有测

15、量精度高,易于安装、响应速度快,对环境要求较低等特点,其外观如图4-7所示。 图4-7 HMD40型温/湿度传感变送器实物图该传感器的主要性能指标如下:1、温度检测范围:-1060;测量精度:0.3%;2、湿度检测范围:0100%RH;测量精度:1.5%RH;3、工作电压:1028V DC;4、输出信号:420mA。二、光照传感器光控用于控制遮阳幕的启闭,使作物得到合理的光照度并实现以下目的:免除作物超过光饱合点,提高光合作用;实现对长日照作物、中日照作物和短日照作物的光照控制。光照度传感器采用北京易盛泰和科技有限公司产品型号Poi88-c光照度传感器。该传感器采用先进的电路模块技术开发变送器

16、,用于实现对环境光照度的测量,输出标准的电压及电流信号,体积小,安装方便,线性度好,传输距离长,抗干扰能力强。可广泛用于环境、养殖、建筑、楼字等的光照度测量,量程可调。1、量程:O-200K1UX、O-20K10X、02000可选;2、供电电压:24VDC12VDC;3、输出信号:204mA,10VOV可选;4、精度:2。三、CO2浓度传感器二氧化碳控制实时监测C02的含量,当C02的含量低于一定值时打开C02储气罐或C02发生器以增施气肥。C02传感器选用弗加罗公司生产TGS4160二氧化碳传感器,该传感器是固态电化学型气体敏感元件。这种二氧化碳传感器除具有体积小、寿命长、选择性和稳定性好等

17、特点外,同时还具有耐高湿低温的特性,可广泛用于自动通风换气系统或是C02气体的长期监测等应用场合。TGS4160传感器的主要技术参数如下:1、测量范围:05000ppm;2、使用寿命:2000天;3、内部热敏电阻(补偿用):100k Q5:4、使用温度:一10+505、使用湿度595RH。3.2 EM235模拟量输入/输出模块在控制系统中,传感器将检测到的温度转换成标准电压或电流信号,系统需要配置模拟量输入模块,将电压或电流信号转换成数字信号再送入PLC中进行处理。在这里我们选择西门子的EM235 模拟量输入/输出模块。一、EM235模拟量输入/输出模块简介EM 235模块是组合强功率精密线性

18、电流互感器、意法半导体(ST)单片集成变送器ASIC芯片于一体的新一代交流电流隔离变送器模块,它可以直接将被测主回路交流电流转换成按线性比例输出的DC420mA(通过250电阻转换DC 15V或通过500电阻转换DC210V)标准信号,连续输送到接收装置。EM235模块具有4路模拟量输入/1路模拟量输出。EM235需要直流24V的工作电源。它利用DIP开关设置输入信号的量程。表4-3所示为如何用DIP开关设置EM 235模块。通过开关16可选择模拟量输入范围。DIP开关SW6决定模拟量输入的单双极性,当SW6为ON时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入,SW4和S

19、W5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。所有的输入设置成相同的模拟量输入范围。表中,ON为接通,OFF为断开。表4-3 EM 235选择模拟量输入范围和分辨率的开关表单极性满量程输入分辨率SW1SW2SW3SW4SW5SW6ONOFFOFFONOFFON0到50mV12.5VOFFONOFFONOFFON0到100mV25VONOFFOFFOFFONON0到500mV125uAOFFONOFFOFFONON0到1V250VONOFFOFFOFFOFFON0到5V1.25mVONOFFOFFOFFOFFON0到20mA5AOFFONOFFOFFOFFON

20、0到10V2.5mV根据温室控制系统中的控制模块,经由传感器测得的温度、光照度、CO2的测量值均为单极性,选择0到10V的量程,故设置DIP开关为010001。二、EM235模拟量输入输出模块的使用EM235模拟量输入输出混合模块输入信号整定的步骤:1、在模块脱离电源的条件下,通过DIP开关选择需要的输入范围。2、接通CPU及模块电源,并使模块稳定15分钟。3、用一个电压源或电流源,给模块输入一个零值信号。4、调节偏置电位器,使模拟量输入寄存器的读数为零或所需要的数值。5、将一个满刻度的信号加到模块输入端,调节增益电位器,直到读数为32000,或所需要的数值。经上述调整后,若输入最大值为010

21、V的模拟量信号,则对应的数字量结果应为32000或所需数字,其关系如图所示。 图4-8 EM235转换曲线三、EM235模块模拟量I/O接线示意图如图所示为EM235模块模拟量I/O接线示意图。24V DC电源正极接入模块左下方L+端子,负极接入M端子。EM235模块的上部端子排为标注A、B、C、D的四路模拟量输入接口,可分别接入标准电压、电流信号。为电压输入时,如A口所示,电压信号正极接入A+端,负极接入A-端,RA端悬空。为电流输入时,如B口所示,须将RB与B+短接,然后与电流信号输出端相连,电流信号输入端则接入B-借口。若4个接口未能全部使用,如C口所示,未用的接口要将C+与C-端用短路

22、子短接,以免受到外部干扰。下部端子为一路模拟量输出端的3个接线端子MO、VO、IO,其中MO为数字接地接口,VO为电压输输出接口,IO为电流输出接口。若为电压负载,则将负载接入MO、VO接口,若为电流负载则接入MO、IO接口。 图4-5 EM235接线图控制系统的软件设计PLC控制系统的设计主要包括硬件设计和软件设计两部分。本章节在硬件设计的基础上,详细介绍本项目的软件设计,主要包括软件设计的基本步骤、方法、编程软件STEP7-Micro/WIN的介绍以及本项目的程序设计。1 PLC程序设计的方法PLC程序设计常用的方法主要有经验设计法、电路转换梯形图法、逻辑设计法、顺序控制设计法等。一、经验

23、设计法:即根据前人总结的典型控制电路程序,再按照设计中被对象的具体要求,把典型程序进行重新组合,而且需要反复调试和修改,得到现在系统所需要的梯形图,有时仅仅这些还不能满足要求,还需要增加中间环节,才能得出符合要求的系统。这种方法没有一定的规律可遵循,设计所用的时间和设计质量与设计者的经验有很大的关系,故称为经验设计法。 二、继电器控制电路转换为梯形图法:用PLC的外部硬件接线和梯形图软件来实现继电器控制系统的功能。 三、顺序控制设计法:根据功能流程图,以步为核心,从起始步开始一步一步地设计下去,直至完成。此法的关键是画出功能流程图。四、逻辑设计法:通过中间量把输入和输出联系起来。实际上就找到输

24、出和输入的关系,完成设计任务。本次设计采用的就是经验设计法。 2 编程软件STEP 7-Micro/WIN概述STEP7-Micro/WIN32 编程软件是基于Windows的应用软件,由西门子公司专为S7-200系列可编程控制器设计开发,它功能强大,既可用于开发用户程序,又可以实时监控用户程序的执行状态。编程软件的具体功能如下。1、可以用梯形图、语句表和功能块图编程。2、可以进行符号编程,通过符号表分配符号和绝对地址,即对编程元件定义符号名称,增加程序的可读性,并可打印输出。3、支持三角函数,开方,对数运算功能。4、具有易于使用的组态向导。5、可用于CPU硬件配置。6、可以将STEP 7-M

25、icro/WIN正在处理的程序与所连接的PLC中的程序进行比较。3 控制系统的程序设计3.1 程序的设计思路本控制系统设有手动、自动两种工作模式,自动模式为正常运行状态,手动模式用于应对一些突发情况。在自动工作模式下,PLC运行时,将传感器对温室温度、光照、二氧化碳浓度等环境因素进行检测的测量值与温室控制系统的设定值进行比较,如果温度的检测量高于设定值,PLC就会发出相应的指令控制冷风机的开启和通风扇正转(将温室中的空气排向外界);如果测量值低于设定值,则打开加热器和热风机,对温室进行加温,并使通风扇反转(将外界的空气引入温室)。当温室的光照低于设定值时,系统打开遮阳帘和补光灯;当温室的光照高

26、于设定值时,系统关闭遮阳帘。当温室的二氧化碳浓度低于设定值,系统开启二氧化碳调节阀。如果温室中的测量值与设定值相等,则关闭关闭相应设备,保持温室中的环境参数。3.2 控制程序流程图1、温度控制流程图温室大棚的温度控制流程图如图5-1所示。 图5-1 温度控制流程图 二、光照控制流程图温室大棚的光照控制流程图如图5-2所示。 图5-2 光照控制流程图2、CO2浓度控制流程图温室大棚的CO2浓度控制流程图如图5-3所示。 图5-3 CO2浓度控制流程图 3.3 控制程序设计及分析 一、自动/手动切换 I0.0为自动/手动切换,I0.1为总启动,当I0.1=1时,Q1.1得电,启动灯亮,I0.2为总

27、停止,当I0.0=1,I0.1=1时,中间继电器M0.0得电,系统的运行方式为自动模式;当I0.0=0,I0.1=1时,中间继电器M0.1得电,系统的运行方式为手动模式。二、温度控制 当中间继电器M0.0得电时,系统的运行方式为自动模式。在自动情况下,温度传感器将测得的模拟量通过模拟量输入模块EM235送入PLC中,通过整数比较指令,将温度传感器检测到的测量值AIW0与设定值“25度”进行比较,当AIW025时,中间继电器M0.2得电,启动降温设备;当AIW020时,中间继电器M2.0得电,启动补光设备;当AIW220时,中间继电器M2.1得电,启动补光设备。 当中间继电器M0.1得电时,系统的运行方式为手动模式。可通过控制相应的按钮遮阳帘开帘I0.5、遮阳帘关帘I0.6、补光灯I1.4,进行温室大棚光照强度的手动控制。 在温室大棚的光照控制过程中,自动模式下,当光照传感器测量的光照强度低于设定的光照值时,中间继电器M2.1得电,遮阳帘开帘补光;手动模式下,将控制遮阳帘开关帘的单刀双掷开关拨至“遮阳帘开帘”,中间继电器M2.2得电,遮阳帘开帘补光。 在温室大棚的光照控制过程中,自动模式下,当光照传感器测量的光照强度高于设定

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1