ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:178.84KB ,
资源ID:9672119      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9672119.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人脸识别论文文献翻译中英文.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

人脸识别论文文献翻译中英文.docx

1、人脸识别论文文献翻译中英文附录(原文及译文)翻译原文来自Thomas David Heselt ine BSc. Hons. The Un iversity of YorkDepartme nt of Computer Scie neeFor the Qualification of PhD. - September 2005 -Face Recog niti on: Two-Dime nsio nal and Three-Dime nsional Tech nique4 Two-dimensional Face Recognition4.1Feature LocalizationBefore

2、 discuss ing the methods of compari ng two facial images we now take a brief look at some at the prelimi nary processes of facial feature alig nment. This process typically con sists of two stages: face detect ion and eye localisati on. Depe nding on the applicati on, if the positi on of the face wi

3、th in the image is known beforeha nd (for a cooperative subject in a door access system for example) the n the face detect ion stage can ofte n be skipped, as the regi on of in terest is already known. Therefore, we discuss eye localisati on here, with a brief discussi on of face detect ion in the l

4、iterature review(sect ion 3.1.1).The eye localisati on method is used to alig n the 2D face images of the various test sets used throughout this section. However, to ensure that all results presented are represe ntative of the face recog niti on accuracy and not a product of the performa nee of the

5、eye localisati on rout ine, all image alig nments are manu ally checked and any errors corrected, prior to testi ng and evaluati on.We detect the position of the eyes within an image using a simple template based method. A training set of manually pre-aligned images of faces is taken, and each image

6、 cropped to an area around both eyes. The average image is calculated and used as a template.Figure 4-1 - The average eyes. Used as a template for eye detection.Both eyes are in cluded in a sin gle template, rather tha n in dividually search ing for each eye in turn, as the characteristic symmetry o

7、f the eyes either side of the no se, provides a useful feature that helps disti nguish betwee n the eyes and other false positives that may be picked up in the background. Although this method is highly susceptible to scale(i.e. subject distance from the camera) and also in troduces the assumpti on

8、that eyes in the image appear n ear horiz on tai. Some preliminary experimentation also reveals that it is advantageous to include the area of skin just ben eath the eyes. The reas on being that in some cases the eyebrows can closely match the template, particularly if there are shadows in the eye-s

9、ockets, but the area of skin below the eyes helps to disti nguish the eyes from eyebrows (the area just below the eyebrows con tai n eyes, whereas the area below the eyes contains only plain skin).A window is passed over the test images and the absolute difference taken to that of the average eye im

10、age shown above. The area of the image with the lowest difference is taken as the region of interest containing the eyes. Applying the same procedure using a smaller template of the in dividual left and right eyes the n refi nes each eye positi on.This basic template-based method of eye localisati o

11、n, although provid ing fairly preciselocalisati ons, ofte n fails to locate the eyes completely. However, we are able to improve performa nce by in cludi ng a weighti ng scheme.Eye localisati on is performed on the set of training images, which is the n separated in to two sets: those in which eye d

12、etect ion was successful; and those in which eye detect ion failed. Taking the set of successful localisatio ns we compute the average dista nce from the eye template (Figure 4-2 top). Note that the image is quite dark, indicating that the detected eyes correlate closely to the eye template, as we w

13、ould expect. However, bright points do occur near the whites of the eye, suggesting that this area is often inconsistent, varying greatly from the average eye template.Figure 4-2 -Distance to the eye template for successful detections (top) indicating variance due to noise and failed detections (bot

14、tom) showing credible variance due to miss-detected features.In the lower image (Figure 4-2 bottom), we have take n the set of failed localisati on s(images of the forehead, no se, cheeks, backgro und etc. falsely detected by the localisati on routi ne) and once aga in computed the average dista nce

15、 from the eye template. The bright pupils surr oun ded by darker areas in dicate that a failed match is ofte n due to the high correlati on of the nose and cheekb one regi ons overwhel ming the poorly correlated pupils. Wanting to emphasise the differenee of the pupil regions for these failed matche

16、s and minimise the varianee of the whites of the eyes for successful matches, we divide the lower image values by the upper image to produce a weights vector as show n in Figure 4-3. When applied to the differe nee image before summi ng a total error, this weight ing scheme provides a much improved

17、detect ion rate.Figure 4-3 - Eye template weights used to give higher priority to those pixels that best represent the eyes.4.2The Direct Correlation ApproachWe begi n our inv estigatio n into face recog niti on with perhaps the simplest approach,k nown as the direct correlation method (also referre

18、d to as template matching by Brunelli and Poggio 29 ) inv olvi ng the direct comparis on of pixel inten sity values take n from facial images. We use the term Direct Correlation to encompass all techniques in which face images are compareddirectly, without any form of image space an alysis, weight i

19、ng schemes or feature extracti on, regardless of the dsta nee metric used. Therefore, we do not infer that Pears on s correlatapplied as the similarity fun cti on (although such an approach would obviously come un der our definition of direct correlation). We typically use the Euclidean distance as

20、our metric in these inv estigati ons (in versely related to Pears on s correlati on and can be con sidered as a scaletran slati on sen sitive form of image correlati on), as this persists with the con trast made betwee n image space and subspace approaches in later sect ions.Firstly, all facial imag

21、es must be alig ned such that the eye cen tres are located at two specified pixel coord in ates and the image cropped to remove any backgro und in formati on. These images are stored as greyscale bitmaps of 65 by 82 pixels and prior to recog niti on con verted into a vector of 5330 eleme nts (each e

22、leme nt containing the corresp onding pixel inten sity value). Each corresp onding vector can be thought of as describ ing a point with in a 5330 dime nsional image space. This simple prin ciple can easily be exte nded to much larger images: a 256 by 256 pixel image occupies a si ngle point in 65,53

23、6-dime nsional image space and again, similar images occupy close points within that space. Likewise, similar faces are located close together within the image space, while dissimilar faces are spaced far apart. Calculati ng the Euclidea n dista need, betwee n two facial image vectors (ofte n referr

24、ed to as the query image q, and gallery imageg), we get an indication of similarity. A threshold is then applied to make the final verification decision.d q g (d threshold ? accept) (d threshold ? reject ) . Equ. 4-14.2.1 Verification TestsThe primary concern in any face recognition system is its ab

25、ility to correctly verify aclaimed identity or determine a persons most likely identity from a set of potential matches in a database. In order to assess a given system s ability to perform these tasks, a variety ofevaluati on methodologies have arise n. Some of these an alysis methods simulate a sp

26、ecific mode of operatio n (i.e. secure site access or surveilla nee), while others provide a more mathematical description of data distribution in some classificatio n space. In additi on, the results gen erated from each an alysis method may be prese nted in a variety of formats. Throughout the exp

27、erime ntatio ns in this thesis, we primarily use the verification test as our method of analysis and comparison, although we also use Fisher Lin ear Discrim inant to an alyse in dividual subspace comp onents in secti on 7 and the iden tificati on test for the final evaluatio ns described in sect ion

28、 8. The verificati on test measures a system s ability to correctly accept or reject the proposed ide ntity of an in dividual. At a fun cti on al level, this reduces to two images being prese nted for comparis on, for which the system must return either an accepta nee (the two images are of the same

29、 pers on) or rejectio n (the two images are of differe nt people). The test is desig ned to simulate the applicati on area of secure site access. In this scenario, a subject will present some form of identification at a point of en try, perhaps as a swipe card, proximity chip or PIN nu mber. This nu

30、 mber is the n used to retrieve a stored image from a database of known subjects (ofte n referred to as the target or gallery image) and compared with a live image captured at the point of entry (the query image). Access is the n gran ted depe nding on the accepta nce/rejecti on decisi on.The result

31、s of the test are calculated accord ing to how many times the accept/reject decisi on is made correctly. In order to execute this test we must first define our test set of face images. Although the nu mber of images in the test set does not affect the results produced (as the error rates are specifi

32、ed as percentages of image comparisons), it is important to ensure that the test set is sufficie ntly large such that statistical ano malies become in sig ni fica nt (for example, a couple of badly aligned images matching well). Also, the type of images (high variation in lighting, partial occlusion

33、s etc.) will significantly alter the results of the test. Therefore, in order to compare multiple face recog niti on systems, they must be applied to the same test set.However, it should also be no ted that if the results are to be represe ntative of system performance in a real world situation, then the test d

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1