ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:286.61KB ,
资源ID:951977      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/951977.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(近似动态规划相关的外文文献及翻译.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

近似动态规划相关的外文文献及翻译.docx

1、近似动态规划相关的外文文献及翻译外文文献:Adaptive Dynamic Programming: An IntroductionAbstract: In this article, we introduce some recent research trends within the field of adaptive/approximate dynamic programming (ADP), including the variations on the structure of ADP schemes, the development of ADP algorithms and ap

2、plications of ADP schemes. For ADP algorithms, the point of focus is that iterative algorithms of ADP can be sorted into two classes: one class is the iterative algorithm with initial stable policy; the other is the one without the requirement of initial stable policy. It is generally believed that

3、the latter one has less computation at the cost of missing the guarantee of system stability during iteration process. In addition, many recent papers have provided convergence analysis associated with the algorithms developed. Furthermore, we point out some topics for future studies.IntroductionAs

4、is well known, there are many methods for designing stable control for nonlinear systems. However, stability is only a bare minimum requirement in a system design. Ensuring optimality guarantees the stability of the nonlinear system. Dynamic programming is a very useful tool in solving optimization

5、and optimal control problems by employing the principle of optimality. In 16, the principle of optimality is expressed as: “An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state

6、resulting from the first decision.” There are several spectrums about the dynamic programming. One can consider discrete-time systems or continuous-time systems, linear systems or nonlinear systems, time-invariant systems or time-varying systems, deterministic systems or stochastic systems, etc.We f

7、irst take a look at nonlinear discrete-time (timevarying) dynamical (deterministic) systems. Time-varying nonlinear systems cover most of the application areas and discrete-time is the basic consideration for digital computation. Suppose that one is given a discrete-time nonlinear (timevarying) dyna

8、mical systemwhere represents the state vector of the system and denotes the control action and F is the system function. Suppose that one associates with this system the performance index (or cost)where U is called the utility function and g is the discount factor with 0 , g # 1. Note that the funct

9、ion J is dependent on the initial time i and the initial state x( i ), and it is referred to as the cost-to-go of state x( i ). The objective of dynamic programming problem is to choose a control sequence u(k), k5i, i11,c, so that the function J (i.e., the cost) in (2) is minimized. According to Bel

10、lman, the optimal cost from time k is equal toThe optimal control u* 1k2 at time k is the u1k2 which achieves this minimum, i.e.,Equation (3) is the principle of optimality for discrete-time systems. Its importance lies in the fact that it allows one to optimize over only one control vector at a tim

11、e by working backward in time.In nonlinear continuous-time case, the system can be described byThe cost in this case is defined asFor continuous-time systems, Bellmans principle of optimality can be applied, too. The optimal cost J*(x0)5min J(x0, u(t) will satisfy the Hamilton-Jacobi-Bellman Equatio

12、nEquations (3) and (7) are called the optimality equations of dynamic programming which are the basis for implementation of dynamic programming. In the above, if the function F in (1) or (5) and the cost function J in (2) or (6) are known, the solution of u(k ) becomes a simple optimization problem.

13、 If the system is modeled by linear dynamics and the cost function to be minimized is quadratic in the state and control, then the optimal control is a linear feedback of the states, where the gains are obtained by solving a standard Riccati equation 47. On the other hand, if the system is modeled b

14、y nonlinear dynamics or the cost function is nonquadratic, the optimal state feedback control will depend upon solutions to the Hamilton-Jacobi-Bellman (HJB) equation 48 which is generally a nonlinear partial differential equation or difference equation. However, it is often computationally untenabl

15、e to run true dynamic programming due to the backward numerical process required for its solutions, i.e., as a result of the well-known “curse of dimensionality” 16, 28. In 69, three curses are displayed in resource management and control problems to show the cost function J , which is the theoretic

16、al solution of the Hamilton-Jacobi- Bellman equation, is very difficult to obtain, except for systems satisfying some very good conditions. Over the years, progress has been made to circumvent the “curse of dimensionality” by building a system, called “critic”, to approximate the cost function in dynamic programming (cf. 10, 60, 61, 63, 70, 78, 92, 94, 95). The idea is to approximate dynamic programming solutions by

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1