ImageVerifierCode 换一换
格式:DOCX , 页数:31 ,大小:70.16KB ,
资源ID:9512571      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9512571.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(微观经济学计算题.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

微观经济学计算题.docx

1、微观经济学计算题微观经济学计算题2、 3、 (2)货币的边际效用和总效用各多少?(3)假如X的价格提高44%,Y的价格不变,为使他保持原有的效用水平,收入必须增加多少?解:(1)由U=XY,得MUX=Y,MUY=X,根据消费者均衡条件得Y/2=X/3 考虑到预算方程为2X+3Y=120 解得X=30,Y=20(2)货币的边际效用=MUX/PX=Y/PX=10 总效用TU=XY=600(3)提价后PX=2.88 新的消费者均衡条件为Y/2.88=X/3 由题意知XY=600,解得X=25,Y=24 将其代入预算方程M=2.8825+324=144元 M=144-120=24元 因此,为保持原有的

2、效用水平,收入必须增加24元。3、证明需求曲线P=a/Q上的点均为单一弹性证明:dQ/dP=-aP-2, Ed=(dQ/dP)(P/Q)=(-aP-2)(P/aP-1)=-1, 故| Ed|=1,为单一弹性。4、1986年7月某外国城市公共汽车票价从32美元提高到40美元,1986年8月的乘客为880万次,与1985年同期相比减少了12%,求需求的弧弹性.解:由题设, P1=32, P2=40, Q2=880 Q1=880/(1-12%)=880/88%=1000 于是,Ed=(Q2-Q1)/( P2-P1)(P1+P2)/(Q1+Q2)-0.57 故需求弹性约为-0.57.5、设汽油的需求价

3、格弹性为-0.5,其价格现为每加仑1.20美元,试问汽油价格上涨多少才能使其消费量减少10?解:因为(dQ/Q)(P/dP)=-0.5 要使dQ/Q=-10%,则有dP/P=1/5 dP=1.20.2=0.24 所以每加仑汽油价格要上涨0.24美元6、某电脑公司生产的芯片的需求弹性为-2,软盘驱动器的弹性为-1,如果公司将两种产品都提价2%,那么这些产品的销售将会怎样变化?解:因为芯片弹性(dQ/Q)(P/dP)=-2 所以dQ/Q=-22%=-4%因为软盘驱动器弹性(dQ/Q)(P/dP)=-1 所以dQ/Q=-12%=-2%即提价2%后,芯片销售下降4%,软盘驱动器销售下降2%。7、消费x

4、,y两种商品的消费的效用函数为:u=xy, x,y的价格均为4,消费者的收入为144,求x价格上升为9,所带来的替代效应和收入效应。解:Mux=y Muy=x 因为Mux/Px=Muy/Py 得X=y 又因为4X+4y=144 得X=y=18 购买18单位x与18 单位y,在x价格为9时需要的收入M=234 在实际收入不变时,Mux/Muy=Px/Py=y/x=9/4 且9x+4y=234得x=13,可以看出由于替代效应对X商品的购买减少5单位。再来看价格总效应,当Px=9,Py=4时,Mux=y Muy=x Y/x=9/4且 9x+4y=144得X=8 y=18 由此可见价格总效应使X商品的

5、购买减少10单位,收入效应与替代效应各为5单位。8、某消费者消费X和Y两种商品时,无差异曲线的斜率处处是Y/X,Y是商品Y的消费量,X是商品X的消费量。(1)说明对X的需求不取决于Y的价格,X的需求弹性为1;(2)PX=1,PY=3,该消费者均衡时的MRSXY为多少?(3)对X的恩格尔曲线形状如何?对X的需求收入弹性是多少?解:(1)消费者均衡时,MRSXY=Y/X=PX/PY,即PXX=PYY, 又因为PXX+PYY=M,故X=M/2PX,可见对X的需求不取决于Y的价格。 由于dX/dPX=-M/2PX2 |EX|=-(dX/dPX)(PX/X)=1 (2)已知PX=1,PY=3,消费者均衡

6、时,MRSXY=PX/PY=1/3。 (3)因为X=M/2PX,所以dX/dM=1/2PX, 若以M为纵轴,X为横轴,则恩格尔曲线是从原点出发,一条向右上方倾斜的直线,其斜率是dM/dX =2PX。 对X的需求收入弹性EM=(dX/dM)(M/X)=19、已知销售商品X的总收益(R=PQ)方程为:R=100Q-2Q2,计算当边际收益为20时的点价格弹性。解:由R=100Q-2Q2,得MR=dR/Dq=100-4Q 当MR=20时,Q=20,考虑到R=PQ=100-2Q2,得P=100-2Q=60 Ed=(dQ/dP)(P/Q)=(-1/2)(60/20)=-3/210、X公司和Y公司是机床行业

7、的两个竞争者,这两家公司的主要产品的需求曲线分别为:PX=1000-5QX,PY=1600-4QY,这两家公司现在的销售量分别为100单位X和250单位Y。(1)求X和Y当前的价格弹性;(2)假定Y降价后,使QY增加到300单位,同时导致X的销售量QX下降到75单位,试问X公司产品X的交叉价格弹性是多少?(3)假定Y公司的目标是谋求销售收入最大化,你认为它降价在经济上是否合理?解:(1)PX=1000-5QX=1000-5100=500 PY=1000-5QY=1600-4250=600 EdX=(dQX/dPX)(PX/QX)= (-1/5)(500/100)=-1 EdY=(dQY/dPY

8、)(PY/QY)= (-1/4)(600/250)=-3/5 (2)由题设,QY=300,QX=75 则 PY=1600-4QY=400 QX=-25, QY=-200 于是EXY=(QX/PY)(PY+PY)/22/(QX+QX)=5/7 (3)根据(1)得知Y公司产品在价格P=600时,需求价格弹性为-3/5,说明缺乏弹性, 这时降价会使销售收入减少,故降价不合理.第三章 消费者行为理论计算题1、某人每周花 360元买X和Y,Px=3,Py=2,效用函数为:U=2X2Y,求在均衡状态下,他如何购买效用最大?解:max:U=2X2Y S.T 360=3X+2Y构造拉格朗日函数得:W=2X2Y

9、+(360-3X-2Y)dW/Dx=MUx-3=4xy-3=0dW/Dy=MUy-2=2x2-2=0求得:4Y=3X,又360=3X+2Y,得X=80,Y=602、求最佳需求,maxU=X1+(X2-1)3/3 S.T 4X1+4X2=8(1) 如果效用函数变为U=3X1+(X2-1)3,而预算约束不变则最佳需求会改变吗?(2)如果效用函数不变,而预算约束变为2X1+2X2=4, 则最佳需求会改变吗?解:运用拉格朗日函数,L=X1+(X2-1)3/3+(8-4X1-4X2) dL/dX1=1-4=0 dL/dX2=(x2_1)2-4=0 显然,(X2-1)2=1,求得:X2=0,X1=2;或X

10、2=2, X1=0 代入总效用函数,可将X2=2, X1=0舍去,因此最佳需求为X2=0,X1=2 当U=3X1+(X2-1)3时,同理求得X1=2,X2=0,即最佳需求不变. 当预算约束变为2X1+2X2=4时,同理求得:X1=2,X2=0,最佳需求也不变.3、某人的收入为10000元,全部用于购买商品X和商品Y(各自的价格分别为50、20元),其效用函数为u=xy2。假设个人收入税率为10%,商品X的消费税率为20%。为实现效用极大化,该人对商品x、y的需求量应分别为多少?解:M=10000(1-10%)=9000 Px=50(1+20%)=60 Py=20 预算约束式:60x+20y=9

11、000 由此可得 y=450-3x 代入u=xy2的得u=9(x3-300x2+22500x) 由du/dx=9(3x2-600x+22500)=0得 x1=150 x2=50 由于x1=150时,u=0不合题义,所以该人需求量为x=50,y=300。4、所有收入用于购买x,y的一个消费者的效用函数为u=xy,收入为100,y的价格为10,当x的价格由2上升至8时,其补偿收入(为维持效用水平不变所需的最小收入)是多少?解:最初的预算约束式为2x+10y=100效用极大化条件MUx/Muy=Px/Py=2/10由此得y/x=1/5x=25,y=5,u=125价格变化后,为维持u=125效用水平,

12、在所有组合(x,y)中所需收入为m=8x+10y=8x+10125/x最小化条件(在xy=125的约束条件下)dm/dx=8-1250x-2=0解得x=12.5,y=10,m=2005、若某消费者的效用函数为U=XY4,他会把收入的多少用于商品Y上? 解:由U=XY4,得MUX=Y4,MUY=4XY3,根据消费者均衡条件得Y4/PX=4XY3/PY,变形得:PXX=(1/4)PYY,将其代入预算方程得PYY=(4/5)M,即收入中有4/5用于购买商品Y。6、设某消费者的效用函数为U(x,y)=2lnx+(1-)lny;消费者的收入为M; x,y两商品的价格分别为PX,PY;求对于X、Y两商品的

13、需求。解: 构造拉格朗日函数L=2lnX+(1-)lnY+(M-PXX-PYY) 对X 、Y 分别求一阶偏导得2Y/(1-)X=PX/PY 代入PXX+PYY=M 得:X=2M/(3-) PX Y=(1-)M/(3-) PY7、某人的效用函数依赖于全年不劳动的闲暇天数X,和对商品Y的消费量,购买Y的支出全部来源于其劳动天数L所得的工资。假设日工资为100元,商品Y的价格为50元,问该人若想实现效用最大化(U=X2Y3),则他每年应安排多少个劳动日?解:预算约束式为50Y=100L, 即Y=2L=2(365-X)构造拉格朗日函数L= X2Y3-(Y +2X -730) 对X 、Y 分别求一阶偏导

14、得Y =3X ,进而得X =146,Y =438,L =219,即该人每年应安排219个工作日.8、消费X ,Y两种商品的消费者的效用函数为 U = X3Y2 ,两种商品的价格分别为 PX = 2 ,PY = 1 ,消费者收入为 M = 20 ,求其对 X ,Y 的需求量。解:PXX + PYY = M2X + Y = 20U = X3(20-2X)2 = 400X3 80X4 + 4X5效用极大 1200X2 -320X3 + 20X4 = 0解得X1 = 0 ,X2 = 6 ,X3 = 10X = 0或10时U = 0 ,不合题意所以X = 6 ,Y = 8 。9、令消费者的需求曲线为P=

15、a-bQ,a,b0,并假定每单位商品征收t 单位的销售税,使得他支付的价格提高到P(1+t)。证明,他的消费者剩余的损失将总是超过政府因征税提高的收益。解:设价格为P时,消费者的需求量为Q1,由P=a-bQ1,得Q1= (a-P)/b。又设价格为P(1+t)时,消费者的需求量为Q2,则Q2=a-P(1+t)/b消费者剩余的损失=0Q1(a-bQ)dQ-PQ1-0Q2(a-bQ)dQ-P(1+t)Q2=Q1Q2(a-bQ)dQ+ P(1+t)Q2-PQ1=(aQ-bQ2/2)Q1Q2+ P(1+t)Q2-PQ1政府征税而提高的收益= P(1+t)Q2-PQ1消费者剩余损失政府征税得到的收益=(a

16、Q-bQ2/2)Q1Q2=(aQ1-bQ12/2)- (aQ2-bQ22/2)=(2tP+t2P2)/2b因为b、t、P0 所以(2tP+t2P2)/2b0因此,消费者剩余的损失要超过政府征税而提高的收益。第四章 生产者行为理论计算题1、生产函数为Q=LK-0.5L2+0.08K2,现令K=10,求出APL和MPL 。解:APL=10-0.5L+8/L,MPL=K-L=10-L2、假定某大型生产企业,有三种主要产品X、Y、Z,已知它们的生产函数分别为: QX=1.6L0.4C0.4M0.1 QY=(0.4L2CM)1/2 QZ=10L+7C+M 试求这三种产品的生产规模报酬性质.解:fX(L,

17、C,M)= 1.6(L)0.4(C)0.4(M)0.1=0.9QX 产品X的规模报酬递减 fY(L,C,M)= 0.4(L)2(C)(M)1/2=2QY 产品Y的规模报酬递增 fZ(L,C,M)= 10L+7C+M=QZ 产品Z的规模报酬不变3、已知生产函数为Q=f(K,L)=10KL/(K+L),求解(1)劳动的边际产量及平均产量函数;(2)劳动边际产量的增减性。解:()劳动的边际产量MPL=dQ/dL=10K2/(K+L)2, 劳动的平均产量APL=Q/L=10K/(K+L) (b)因为MPL=10K2/(K+L)2,得: d(MPL)/dL=-10K22(K+L)/(K+L)4 =-20

18、K2/(K+L)30 所以边际产量函数为减函数。4、某企业使用资本和劳动生产一种小器具,在短期中,资本固定,劳动可变,短期生产函数为, 其中,是小器具的每周生产量,是雇佣工人的数量,每个工人一周工作小时,工资率为元小时。(A)计算企业在下列情况下的取值范围:第一阶段;第二阶段;第三阶段(B)使企业愿意保持短期生产的最低产品价格是多少?(C)产品以一定的价格出售,使得企业每周可能的最大纯利是元,为了获得这样多的利润,必须雇佣个工人,问企业的总固定成本是多少?解:.区分三个生产阶段,关键在于确定AP最大和MP所对应的数值:所以令其为0得:L检验当L时AP是上升的。MP所以所以时当20时所以对于所有

19、的均小于零。因此:第一阶段(2)第二阶段(3)第三阶段B.当时应停产。与是一致的。从可知:, 而时,由生产函数算出。每周工资元元元所以最低价格是元。C.要使利润最大,应使所以时,元由生产函数知时,因此总收益元元元元所以利润元若利润元,则元5、某企业仅生产一种产品,唯一可变要素是劳动,也有固定成本。短期生产函数为.,其中,是每周产量,单位为吨,是雇佣工人数,问:.劳动的平均实物产量最大时,需雇佣多少工人?B.劳动的边际实物产量最大时,需雇佣多少工人?C.平均可变成本最小时,生产多少?D.每周工资元,的价格为元吨,利润最大时,生产多少?E.如果工资为每周元,的价格多大时,企业不扩大或减小生产。F.

20、的价格元吨,总固定成本元,若企业发现只值得雇佣个工人,每周纯利润是多少?解:.由生产函数X.1L得.所以令().则B.由生产函数得.令.所以C.由知:时,最大,此时最小。由该生产函数求得:时,D.利润最大的条件是:.所以.所以既然时,(见部分)所以进行生产是合算的。当时,E.停止扩大生产点是的最大点,因此由()知,利润最大的条件是:L时,所以元F.当时,所以当,总收益所以利润利润元6、 假定某厂商只使用一种生产要素劳动进行生产,生产函数为q=-0.1L3 +6L2 +12L, 求:a.劳动的平均产量最大时厂商雇佣的劳动量 b.劳动的边际产量最大时厂商雇佣的劳动量。解:因为APL =q/L=-0

21、.1L2 +6L +12, dAPL/dL =-0.2L+6=0, L=30. MPL = dq/dL=-0.3L2 +12L +12, dMPL/dL=-0.6L +12 =0, 则L=20.7、 已知厂商的生产函数为Q=L3/8K5/8,又设PL=4元, PK=5元,求该厂商生产200单位产品时,应使用多少单位的L和K才能使成本降至最低?解:MPL=(3/8)L-5/8K5/8, MPK=(5/8)L3/8K-3/8 要实现成本最小化,即要求MPL/MPK=PL/PK=4/5,可得L=(3/4)K 于是有(3K/4)3/8K5/8=200,因此K=200(3/4)-3/8,L=200(3/

22、4)5/88、 证明在柯布道格拉斯生产函数Q=AKL中,、分别为资本和劳动的产出弹性。证明:柯布道格拉斯生产函数记为:Q=ALK, EL=(dQ/dL)(L/Q)=(/L)Q(L/Q)= EK=(dQ/dK)(K/Q)=(/K)Q(K/Q)=计算题1、某企业的平均可变成本为AVC=X2-30X+310,AVC为平均可变成本,X为产量,当市场价格为310时,该企业利润为0,问该企业的固定成本是多少?解:因为利润=TR-TC=(P-AC)Q 且当P=310时,=0,得AC=310 AFC=AC-AVC=310-(X2-30X+310)=-X2+30X,所以TFC=-X3+30X2 考虑到MC=d(

23、TVC)/dX= d(X3-30X2+310X)/dX=3X2-60X+310 根据P=MC=AC,得产量X=20,因此TFC=-X3+30X2=4000 该企业的固定成本是4000单位。2、某企业短期总成本函数为STC=1000+240q-4q2+(1/3)q3。(1)当SMC达到最小值时的产量是多少?(2)当AVC达到最小值时的产量是多少?解:(1)SMC=dSTC/dq=240-8q+q2=(q-4)2+224 所以当q=4时SMC达最小值(2)AVC=(STC-AFC)/q=240-4q+(1/2)q2=1/3(q-6)2+204所以当q=6时AVC达最小4、 生产函数q =LK.劳动

24、和资本价格分别为PL 和PK ,求相应的成本函数.解:生产者均衡时,MPL/MPK = PL/PK ,即K/L= PL/PK ,q= LK,解得Q= PL L+ PK K=2(q PLPK )0.55、 考虑以下生产函数Q=K0.25L0.25M0.25 在短期中,令PL=2,PK=1,PM=4,K=8,推导出短期可变成本函数和平均可变成本函数。解:在短期中,K为固定要素,L、M为可变要素 则TFC=PKK=8 TVC=PLL+PMM=2L+4M 由MPL/PL=MPM/PM得0.25K0.25L-0.75M0.25/2=0.25K0.25L0.25M-0.75/4 由此可得L/M=2 代入生

25、产函数Q=80.25(2M)0.25M0.25=2M1/2 所以M=Q2/4 TVC=2L+4M=Q2+Q2=2Q2 AVC=TVC/Q=2Q 即短期总可变成本函数为TVC=2Q2,平均可变成本函数为AVC=2Q。5、IBM公司是世界上电子计算机的主要制造商,根据该公司的一项资料,公司生产某种型号计算机的产量范围为200到700,在此范围内,总成本函数为:C=28303800+460800Q式中C总成本 Q产量 问题一:如果该种机型的全部市场为1000台,且所有企业的长期总成本函数都相同,那么占有50%市场份额的企业比占有20%市场份额的企业有多大的成本优势? 问题二:长期边际成本为多少? 问

26、题三:是否存在规模经济?解:(1)若占有50%的市场份额,Q为500,平均成本则为(28303800+460800500)/500=517408美元。若占有20%的市场份额,Q为200,则平均成本为(28303800+460800200)/200=605120美元所以占有50%市场份额的企业的平均成本比占有20%市场份额的企业的平均成本低14%。 (2)长期边际成本为460800美元,在200到700的产量范围内,边际成本为常数。 (3)存在规模经济。因为长期平均成本为(460800+28303800/Q),Q越大,平均成本越小。6、已知某厂商的生产函数为Q=L3/8K5/8,又设PL=3元,

27、PK=5元.求总成本为160元时厂商均衡的Q、L与K的值。解: MPPL=(3/8)K5/8L-5/8 MPPK=(5/8)K-3/8L3/8由均衡条件MPPL/MPPK=PL/PK 推出 K=L, 代入成本函数3L+5K=160求得 K=L=20则 Q=L3/8K5/8=207、假设某产品生产的边际成本函数是MC=3Q2-8Q+100,若生产5单位产品时总成本是595,求总成本函数、平均成本函数、总可变成本函数及平均可变成本函数。解:由边际成本函数MC=3Q2-8Q+100积分得成本函数C=Q3-4Q2+100Q+A(A为常数)又因为生产5单位产品时总成本是595可求总成本函数C=Q3-4Q

28、2+100Q+70平均成本函数 AC=Q2-4Q+100+70/Q总可变成本函数 TVC=Q3-4Q2+100Q平均可变成本函数 AVC=Q2-4Q+1008、以重油x和煤炭z为原料得某电力公司,其生产函数为y=(2x1/2+z1/2)2,x,z的市场价格分别30,20,其它生产费用为50。(1) 求电力产量y=484时的x,z投入量及总成本为多少?(2) 求该电力公司的总成本函数。解:(1)将y=484代入生产函数,得484=(2x1/2+z1/2)2整理后得z=(22-2x1/2)2 所以,成本函数为c=30x+20z+50 =30x+20(22-2x1/2)2+50 成本最小化条件为dc/dx=30+40(22-2x1/2)(-x-1/2)=0求解后可得x=64分别代入式可得z1=36 c=2690(2)把生产函数中的y看作一定数值时,生产函数整理后可得z=(y1/2-2x1/2)2总成本函数即为c=30x+20z+50 =30x+20(y1/2-2x1/2)2+50 成本极小化的条件为dc/dx=30+40(y1/2-2x1/2)(-x-1/2)=0 由此可得 x=(16/121)y代回式后即得总成本函数c=(60/1

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1