ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:18.02KB ,
资源ID:9504896      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9504896.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Suzuki反应综述.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

Suzuki反应综述.docx

1、Suzuki反应综述 Suzuki反应综述一、水溶性非膦配体/钯催化体系Wu 等以水溶性联吡啶基季铵盐为配体 19 (Scheme 14)用于Pd催化的水相 Suzuki 反应. 在催化剂用量0.1 mol%, 芳基溴代物苯硼酸K 2CO3 1 1.32( 物质的量比), 反应温度 100 时, 取得较好的产物收率, 催化剂可循环利用5 次. 进一步研究发现 , 在TBAB 存在下, 此催化体系可有效实现芳基氯代物的偶联反应.Pawar 等将吡啶基二乙胺磺酸钠 20 (Scheme 15)作为配体和碱用于纯水相 Pd催化 Suzuki 反应. PdCl2 用量为5 mol%, 芳基卤代物芳基硼

2、酸2011.21 ( 物质的量比), 室温条件下反应3 4 h, 可使芳基溴代物和芳基碘代物的Suzuki 反应较好进行.Adidou 等合成了一种键合在 PEG350 上的二吡啶基甲胺配体21 (Scheme 16), 成功用在纯水体系中 Pd催化的芳基氯代物 Suzuki 反应. Pd(OAc)2 用量为 0.1 mol%, 芳基氯代物芳基硼酸K 2CO3TBAB 1 1.12 0.5( 物质的量比), 反应体系加热至 100 反应15 h, 取得较好的收率. Mai 等合成了一种与 PEG2000键合的二吡啶配体22 (Scheme 17), 成功用于芳基卤代物和四苯基硼酸钠的Suzuk

3、i 偶联反应(Eq. 4)在PEG2000/H2O 的混合溶液中, Pd(OAc)2 用量为0.5 mol%, 反应温度 110 时, 对芳基溴代物表现出较好的反应活性, 对于含吸电子基团的芳基氯代物也具有一定的反应活性. Zhou等合成系列二亚胺型配体 23 (Scheme 18),并成功用于水相Suzuki 反应. 在钯催化剂用量为 0.01 mol%, 芳基溴代物苯硼酸K 2CO3 1 1.32( 物质的量比), 分别考察了水/ 乙醇混合溶液和纯水体系中的Suzuki 反应. 结果表明, 水/乙醇混合溶液中 Suzuki 反应速率高于纯水溶液, 其原因可能是反应底物在纯水中溶解性较差所致

4、. 进一步研究发现, 纯水体系中, TBAB 的加入极大地提高了 Suzuki 反应的速率, 并有效地抑制了苯硼酸脱硼副反应的发生. Li 等将一种胍 24 (Scheme 19)/Pd配合物用于室温下的水相 Suzuki 反应. 在3 mL 乙醇和水的混合溶液中, Pd 催化剂用量为1 2 mol%, 芳基卤代物苯硼酸K 2CO3 1 1.23( 物质的量比), 室温条件下, 对芳基碘代物、溴代物均表现出较好的催化活性. TBAB的加入还可使芳基氯代物的偶联反应进行. Kostas 等成功将一种水溶性卟啉/Pd 配合物25 Scheme 20)用于纯水相 Suzuki 反应. 催化剂用量为

5、0.1 mol%, 芳基溴代物芳基硼酸K 2CO3 1 1.52( 物质的量比), 加热至 100 反应 1 4 h, 取得较好的产品收率. 催化剂虽能重复使用但经第二次循环后催化活性明显降低, 产物收率从100%降至76%. Conelly-Espinosa等将一种水溶性N,O-多齿Pd催化剂26 (Scheme 21) 成功用于纯水相 Suzuki 反应. 它可有效催化芳基溴代物的 Suzuki 反应, 反应结束后, 可通过二氯甲烷萃取分出产物, 含有催化剂的水相可高效地循环使用次. Glcemal 等将两种水溶性 N,N 或N,O 双齿Pd配合物27 和28 (Scheme 22) 用于

6、纯水相 Suzuki 反应. 此催化体系对芳基溴代物取代基的电子效应比较敏感, 对含吸电子基团的芳基溴代物表现出较高反应活性. 例如对溴苯乙酮与苯硼酸 Suzuki 反应的 TON高达 100000而含供电子基团芳基溴代物的偶联反应只有在 TBAB存在下才能顺利进行. Fleckenstein等合成了一系列磺化的 N-杂环卡宾型配体29 和30 (Scheme 23). 研究表明, 此催化体系对含有吸电子或供电子取代基的芳基氯代物均表现出较高的催化活性. 它还对N-杂环芳基氯代物显示较高的催化活性, 例如: 2- 氯吡啶和 2- 氯喹啉可与 1- 萘基硼酸顺利发生Suzuki 反应. Roy

7、等合成一种磺化的 N-杂环卡宾/Pd 配合物31 (Scheme 24). 它在水/ 正丁醇两相中, 可使芳基氯代物Suzuki 反应顺利进行. 此催化体系还对N-杂芳环氯代物具有较好的催化活性. Godoy 等合成一系列磺化的 N-杂环卡宾/Pd 配合物32 35 (Scheme 25). 催化剂对在纯水体系或异丙醇/水体系中的芳基溴代物显示出较好的催化活性. 同时发现, 以催化剂 32的催化活性最高, 在TBAB 存在下还可活化芳基氯代物. Tu等研发了一种水溶性二苯并咪唑基吡啶/Pd 配合物36 (Scheme 26). 在极低的催化剂用量(0.005 mol%)下, 即可在纯水体系中实

8、现水溶性芳基溴代物的 Suzuki反应, 然而, 对于油溶性芳基溴代物则需要有机共溶剂甲醇的存在下, 反应才能顺利进行. Bai 等合成一种水溶性Pd(II)/SNS配合物37 Scheme 27), 并用于水相 Suzuki 反应. 在5 mL 水溶液中, 催化剂用量为2 mol%, 芳基溴代物苯硼酸Na2CO30.50.61( 物质的量比), 75 条件下反应 6 h, 4-溴苯乙酮和苯硼酸的收率为100%. 但此催化体系仅对水溶性芳基溴代物表现出较好反应活性. Li 等研究了2- 芳基萘并噁唑环钯配合物 38 (Scheme 28)催化的纯水相 Suzuki 反应发现, 在催化剂用量为0

9、.1 mol% 时, 对含有吸电子、供电子和位阻基团的芳基溴代物均表现出较好的催化活性. 当催化剂负载量提高到1 mol%时, 含吸电子基团的对氯硝基苯也可顺利进行偶联反应, 产物收率为65%. Zhou 等也合成了一类环钯配合物 39 和40 (Scheme 29), 并成功用于纯水相中芳基溴代物的 Suzuki反应. 在催化剂用量为105 mol% 条件下, 对溴苯甲醚与苯硼酸的 TON高达9.3106, 催化剂可高效地循环使用5 次. Zhang 等将超声波技术用到纯水相中含杂环二茂铁亚胺异环环钯化合物41 和42 (Scheme 30) 催化的Suzuki 反应. 在催化剂41 用量为

10、0.51 mol%, 碱为K 3PO4, TBAB 存在下, 反应温度 90 下反应0.53 h可高效地催化芳基碘代物和溴代物. 当催化剂换为42时, 芳基氯代物的 Suzuki 反应也可顺利进行. 超声波和常规搅拌方法的对比实验表明, 超声波方法可明显加速Suzuki 反应速率. 二、非水溶性配体/钯催化的水相Suzuki反应1非离子双亲化合物促进的Suzuki反应Lipshutz 等将一系列非离子双亲化合物作为促进剂用于钯配合物催化的水相 Suzuki 反应. 在对Scheme 31 所列多种非离子双亲化合物的促进效果进行考察后发现, 双亲化合物的加入可有效提高 Suzuki 反应速率,

11、其中以PTS 的效果最为显著. 在水溶液(2 wt% PTS) 中, 催化剂43 (Scheme 32) 用量为 2 mol%, 室温条件下芳基溴代物即可顺利进行 Suzuki 反应. 此催化体系对位阻较大的2,4,6-三异丙基溴苯也具有较高催化活性, 反应 24 h, 收率可达 76%. 催化剂 44 (Scheme 32) 则对芳基氯代物显示出较高的催化活性, 2,4- 二甲基氯苯和4- 甲氧基苯硼酸在室温下反应11 h, 收率可达99%. Lipshutz 等还将PTS/H2O 体系应用到杂环芳基溴代物的Suzuki 偶联反应. 在水溶液(2 wt% PTS)中, 催化剂43 (Sche

12、me 32) 用量为 2 mol%, 室温或 40 条件下, 芳基或杂环芳基溴代物和芳基或杂环芳基硼酸可顺利进行Suzuki 反应. 作者还将催化剂 45 (Scheme 33) 用于芳基氯代物的 Suzuki 反应中, 并考察了 PTS, TPGS 和Triton X-100 对Suzuki 反应的影响, 结果发现 PTS (2 wt%)的促进作用也是最明显. 对PTS/H2O 体系用于丙烯基醚和芳基硼酸 Suzuki反应(Eq. 5)中的研究结果表明在水溶液(2 wt% PTS)中, 催化剂 46 (Scheme 34) 用量为 2 mol%, 室温条件下, 多种取代基的烯丙基醚和芳基硼酸

13、均可顺利进行Suzuki 反应, 收率为71% 99%. 2. 微波促进的水相Suzuki反应1986 年, Gedye和Giguere等同时发现通过微热加速有机合成反应的现象. 1995 年, Strauss 报道了在密闭反应容器中, 通过微波加热水溶液产生了过热水反应体系. 随着微波技术的发展, 将微波辐射应用于水相有机反应引起了化学家的高度关注.近年, Leadbeater 等首次将微波促进的方法用于过渡金属催化的CC 偶联反应. 相对于传统加热方式, 微波促进的方法可使长达几小时甚至几十小时的偶联反应缩短至几十分钟乃至几分钟, 且催化剂用量可明显降低到106级. 2.1 水/ 有机混合

14、溶液反应体系 Miao等将催化剂 47 (Scheme 35) 用于芳基氯代物和苯硼酸的 Suzuki 偶联反应. 在V(DMF) V( 水)51的混合溶液中, 催化剂47 用量为3 mol%, 芳基氯代物苯硼酸Cs2CO3 1 1.54( 物质的量比) 时, 在TBAI 存在下, 微波加热至 150 保持 15 min, 反应收率可达99%. Bedford 等制备了一种可有效活化芳基氯代物的催化剂Pd(OAc)2/PCy3. 在二噁烷/ 水( V V 6 1) 的混合溶液中, 通过微波加热至 180 , 可使芳基氯代物的Suzuki 反应顺利进行. Zhang等考察了微波加热下用苯基全氟正

15、辛基磺酸盐代替卤代芳烃与 苯硼酸的Suzuki 反应(Eq. 6). 在V( 甲苯) V( 丙酮) V( 水) 4 4 1 的混合溶液中, 以10 mol% Pd(dppf)Cl2 为催化剂, 微波加热至 130 反应10 min, 产物收率高达 95%. 这种方法的特点在于过量的苯基全氟正辛基磺酸盐容易通过萃取法从反应混合物中分离出来. 微波促进的水相 Suzuki 还广泛应用于药物、天然产物和聚合物的合成研究. Gong 和He将微波促进的水相Suzuki 反应用于 4- 芳基苯丙氨酸化合物的合成(Eq. 7). 在水/ 乙腈( V V 1 1) 的混合溶液中, 以PdCl2(PPh3)2

16、 为催化剂, 碱为 Na2CO3, 微波加热至150 反应5 10 min. 结果表明, 碘代、溴代及氯代芳环化合物均可与 4- 丙氨酰基苯硼酸顺利进行 Suzuki 偶联反应. Han 等以Pd(PPh3)4 为催化剂, 在体积比为 1 1的水/丙酮中, 微波加热至100 , 反应15 min, 可使Eq. 8的溴化荧光素与罗丹明衍生物的 Suzuki 反应获得57% 的收率. Appukkuttan等以Pd(PPh3)4(5 mol%) 为催化剂以水与DMF混合溶液( VV11) 为溶剂, 考察了微波作用下的2- 溴-4,5- 二甲氧基苯乙胺甲酸酯与苯硼酸的Suzuki 偶联反应(Eq.

17、9). 结果表明, 相对于传统加热方式, 微波加热方式有明显加速作用. NaHCO3是最适宜的碱, 适宜反应温度为 140 , 反应时间为 10 min带有强给电子性、空间位阻较大的芳基溴代物与含有吸电子基团和位阻基团的硼酸均可在微波加热条件下顺利进行Suzuki 反应. 值得指出的是, 微波加热还可有效避免传统加热条件下苯硼酸自偶联发生. Nehls 等分别以传统加热和微波加热两种方式考察了在水/ 四氢呋喃(THF) 混合溶液中制备一种含聚酮单元的半导体聚合物(Eq. 10) 的工艺条件. 在V(THF) V( 水) 4 1 的混合溶液中, 以PdCl2(PPh3)2 (4 mol%)为催化剂, 碱为 Na2CO3, 在微波功率分别为 70, 100 和150 W 条件下反应12 min, 相应地得到了分子量为3700, 4200 和12600 的聚合物. 而在传统油浴加热条件下, 要得到相近分子量的聚丙酮需要将反应体系加热到回流状态并保持1 3 d. .

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1