ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:121.12KB ,
资源ID:9398356      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9398356.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(全面了解红外遥控器.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

全面了解红外遥控器.docx

1、全面了解红外遥控器全面了解红外遥控作者:San BergmansIR Remote Control Theory The cheapest way to remotely control a device within a visible range is via Infra-Red light. Almost all audio and video equipment can be controlled this way nowadays. Due to this wide spread use the required components are quite cheap. Thus ma

2、king it ideal for us hobbyists to use for our own projects. This part of my knowledge base will explain the theory of operation of IR remote control, and some of the protocols that are in use in consumer electronics. Infra-Red Light Infra-Red actually is normal light with a particular colour. Us hum

3、ans cant see this colour because its wave length of 950nm is below the visible spectrum. Thats one of the reasons why IR is chosen for remote control purposes, we want to use it but were not interested in seeing it. Another reason is because IR LEDs are quite easy to make, and therefor can be very c

4、heap. Although we humans cant see the Infra-Red light emitted from a remote control doesnt mean we cant make it visible. A video camera or digital camera can see the Infra-Red light as you can see in this picture. Unfortunately for us there are many more sources of Infra-Red light. The sun is the br

5、ightest source of all, but there are many others, like: light bulbs, candles, central heating system, and even our body radiates Infra-Red light. In fact everything that radiates heat, also radiates Infra-Red light. Therefor we have to take some precautions to guarantee that our IR message gets acro

6、ss to the receiver without errors. Modulation Modulation is the answer to make our signal stand out above the noise. With modulation we make the IR light source blink in a particular frequency. The IR receiver will be tuned to that frequency, so it can ignore everything else. You can think of this b

7、linking as attracting the receivers attention. We humans also notice the blinking of yellow lights at construction sites instantly, even in brought daylight. In the picture above you can see a modulated signal driving the IR LED of the transmitter on the left side. The detected signal is coming out

8、of the receiver at the other side. In serial communication we usually speak of marks and spaces. The space is the default signal, which is the off state in the transmitter case. No light is emitted during the space state. During the mark state of the signal the IR light is pulsed on and off at a par

9、ticular frequency. Frequencies between 30kHz and 60kHz are commonly used in consumer electronics. At the receiver side a space is represented by a high level of the receivers output. A mark is then automatically represented by a low level. Please note that the marks and spaces are not the 1-s and 0-

10、s we want to transmit. The real relationship between the marks and spaces and the 1-s and 0-s depends on the protocol thats being used. More information about that can be found on the pages that describe the protocols. The Transmitter The transmitter usually is a battery powered handset. It should c

11、onsume as little power as possible, and the IR signal should also be as strong as possible to achieve an acceptable control distance. Preferably it should be shock proof as well. Many chips are designed to be used as IR transmitters. The older chips were dedicated to only one of the many protocols t

12、hat were invented. Nowadays very low power microcontrollers are used in IR transmitters for the simple reason that they are more flexible in their use. When no button is pressed they are in a very low power sleep mode, in which hardly any current is consumed. The processor wakes up to transmit the a

13、ppropriate IR command only when a key is pressed. Quartz crystals are seldom used in such handsets. They are very fragile and tend to break easily when the handset is dropped. Ceramic resonators are much more suitable here, because they can withstand larger physical shocks. The fact that they are a

14、little less accurate is not important. The current through the LED (or LEDs) can vary from 100mA to well over 1A! In order to get an acceptable control distance the LED currents have to be as high as possible. A trade-off should be made between LED parameters, battery lifetime and maximum control di

15、stance. LED currents can be that high because the pulses driving the LEDs are very short. Average power dissipation of the LED should not exceed the maximum value though. You should also see to it that the maximum peek current for the LED is not exceeded. All these parameters can be found in the LED

16、s data sheet. A simple transistor circuit can be used to drive the LED. A transistor with a suitable HFE and switching speed should be selected for this purpose. The resistor values can simply be calculated using Ohms law. Remember that the nominal voltage drop over an IR LED is approximately 1.1V.

17、The normal driver, described above, has one disadvantage. As the battery voltage drops, the current through the LED will decrease as well. This will result in a shorter control distance that can be covered. An emitter follower circuit can avoid this. The 2 diodes in series will limit the pulses on t

18、he base of the transistor to 1.2V. The base-emitter voltage of the transistor subtracts 0.6V from that, resulting in a constant amplitude of 0.6V at the emitter. This constant amplitude across a constant resistor results in current pulses of a constant magnitude. Calculating the current through the

19、LED is simply applying Ohms law again. The Receiver Many different receiver circuits exist on the market. The most important selection criteria are the modulation frequency used and the availability in you region. In the picture above you can see a typical block diagram of such an IR receiver. Dont

20、be alarmed if you dont understand this part of the description, for everything is built into one single electronic component. The received IR signal is picked up by the IR detection diode on the left side of the diagram. This signal is amplified and limited by the first 2 stages. The limiter acts as

21、 an AGC circuit to get a constant pulse level, regardless of the distance to the handset. As you can see only the AC signal is sent to the Band Pass Filter. The Band Pass Filter is tuned to the modulation frequency of the handset unit. Common frequencies range from 30kHz to 60kHz in consumer electro

22、nics. The next stages are a detector, integrator and comparator. The purpose of these three blocks is to detect the presence of the modulation frequency. If this modulation frequency is present the output of the comparator will be low. As I said before, all these blocks are integrated into a single

23、electronic component. There are many different manufacturers of these components on the market. And most devices are available in several versions each of which are tuned to a particular modulation frequency. Please note that the amplifier is set to a very high gain. Therefore the system tends to st

24、art oscillating very easily. Placing a large capacitor of at least 22F close to the receivers power connections is mandatory to decouple the power lines. Some data sheets recommend a resistor of 330 Ohms in series with the power supply to further decouple the power supply from the rest of the circui

25、t. There are several manufacturers of IR receivers on the market. Siemens, Vishay and Telefunken are the main suppliers here in Europe. Siemens has its SFH506-xx series, where xx denotes the modulation frequency of 30, 33, 36, 38, 40 or 56kHz. Telefunken had its TFMS5xx0 and TK18xx series, where xx

26、again indicates the modulation frequency the device is tuned to. It appears that these parts have now become obsolete. They are replaced by the Vishay TSOP12xx, TSOP48xx and TSOP62xx product series. Sharp, Xiamen Hualian and Japanese Electric are 3 Asian IR receiver producing companies. Sharp has de

27、vices with very cryptic ID names, like: GP1UD26xK, GP1UD27xK and GP1UD28xK, where x is related to the modulation frequency. Hualian has its HRMxx00 series, like the HRM3700 and HRM3800. Japanese Electric has a series of devices that dont include the modulation frequency in the parts ID. The PIC-1204

28、2LM is tuned to 36.7kHz, and the PIC12043LM is tuned to 37.9kHz. The End? This concludes the theory of operation for IR remote control systems intended for use in consumer electronics. I realise that other ways exist to implement IR control, but I will limit myself to the description above. One of t

29、he issues not covered here is security. Security is of no importance if I want to control my VCR or TV set. But when it comes to opening doors or cars it literally becomes a key feature! Maybe I will cover this issue later, but not for now. I also realise that my small list of manufacturers is far f

30、rom being complete. It is hardly possible to list every manufacturer here. This page only described the basic theory of operation of IR remote control. It did not describe the protocols that are involved in communication between transmitter and receiver. Many protocols are designed by different manu

31、facturers. You can find the protocols of some manufacturers in the link section at the top of this page. ITT Protocol The ITT IR protocol is a very old one. It differs from other protocols in that it does not use a modulated carrier frequency to send the IR messages. A single command is transmitted

32、by a total of 14 pulses with a width of 10s each. The command is encoded by the distance between the pulses. This protocol is very reliable and consumes very little power ensuring long battery life. Many consumer electronics brands used this protocol in Europe. Among them were: ITT, Greatz, Schaub-Lorenz, Finlux, Luxor, Salora, Oceanic and later also Nokia, to name but a few. Features Only 14 very short IR pulses per message Pulse distance encoding Long battery life 4 bit address, 6 bit command length

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1