ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:176.37KB ,
资源ID:9391382      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9391382.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数值分析法求正弦余弦积分函数.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数值分析法求正弦余弦积分函数.docx

1、数值分析法求正弦余弦积分函数天津职业技术师范大学课 程 设 计 任 务 书 理 学院 数学103 班 学生 张群 课程设计课题: 用数值积分法计算正弦积分函数和余弦积分函数一、课程设计工作日自01 年 7月 4 日至 016 年 月 5日二、同组学生: 无 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时间、主要参考资料等):课题来源:教师自拟类型:理论研究目的和意义:培养学生对数值分析中主要算法的应用能力,探索相关算法之间的内在联系。基本要求:根据数值分析课程所学的知识,应用Matab软件编写程序,完成对算法及其内在原理的实验研究。完成时间: 参考资料:数值分析 李庆扬

2、等 清华大学出版社 指导教师签字: 教研室主任签字: 一、问题叙述用数值积分法计算正弦积分函数和余弦积分函数提示:正弦积分,余弦函数要求:(1)编写函数,对任意给定的,可求出值. (2)使用尽可能少的正余弦函数的调用,计算更精确的值.(用多种方法,创新方法)2、问题分析 1 、数值积分基本原理:用数值分析求解积分的数值方法有很多,如简单的梯形法、矩形法、辛普森(Smso)法、牛顿-科斯特(NewtonCotes)法等都是常用的方法。它们的基本思想都是将整个积分区间a,分成n个子区间x,x,i=1,2,n,其中x=a,x+1b。这样求定积分问题就分解为求和问题。2、本题要求用数值积分法计算正弦积

3、分函数和余弦函数积分,那么应该从编写函数的入手,建立fnction的m文件,通过对函数的调用,对任意跟定的x值,求出积分函数的值。3、数值积分法求解问题1、 梯形公式、矩形公式首先,积分中值定理告诉我们,在积分区间a,b内存在一点,成立dx=(b)(),就是说,底为ba而高为f()的矩形面积恰等于所求区边梯形的面积。如果我们用两端点“高度”(a)与f(b)的算术平均值作为平均高度f()的近似值,这样导出的求积公式df(a)f()便是我们熟悉的梯形公式。将积分区间a,bn等分,每个小区间宽度均为h=,h称为积布步长.记a=xx1xk=b,在小区间上用小矩形面积近似小曲边梯形的面积,若分别取左端点

4、和右端点的函数值为小矩形的高,则分别得到两个曲边梯形面积的近似计算公式.具体程序如下:cear xlpae(,pi); x(2); y=sin(x); s1=s(y)x s2rap()dx s1=umsu()dx; sc2mraz(y)*dx; po(x,cs(x)+,x,sc1,。,x,sc2,o) old on 由图可知这种方法精度太低,应选择其他方法.2、quad函数、qua1函数正弦:fnctin=si(t) a=1e8; 函数在0点无界,去掉点 y=uad(sin()x,a,) y=uadl(sin(x)/x,a,t)余弦:fucty=ci(t) a=-e1; 函数在0点无界,去掉0

5、点 yquad(cos(x)/x,,t) y=uadl(o(x)。/x,a,)图像:1:1;for i1:10 y2(i)=i(x(i));endplo(x,y2,r)tite(辛普森)x=1:100;fori=1:100 y(i)=c(x(i));edplot(x,y,b)tite(辛普森) 给定任意x值,均可计算出对应的正弦、余弦函数积分.但从结果可以看出精度不是很高.3、复合求积公式由于牛顿科特斯公式在n8时不具有稳定性,故不可能通过提高阶的方法来提高求积精度。为了提高精度通常可把积分区间分成若干子区间(通常是等分),再在每个子区间上用低级求积公式。这种方法为复合求积法.3。3.复合梯形

6、公式将区间划分为n等分,分点在每个子区间上采用梯形公式,则得记, 称为复合梯形公式。复合梯形公式的余项由于且所以使 于是复合梯形公式的余项为 事实上只要设,则可得收敛性,只要把改写成为程序如下:正弦:functio T_=hts(a,b,n)h=(b);or k=0:n x(+1)=kh; if x(k+1)=0 x(k+)=10(-10); ended_1h/2*(SS(x(1))+SS(n1);o i=2: F(i)=h*SS(x(i);endT_2sum(F);T_n=T_1+;余弦:uci T_n=fhtxc(,b,n)=(b-)/;or k=0:n x(k1)=*h; if x(k+

7、1)=0 x(k)=1(-10); edndT_1((x(1)+CC(x(n+1));fo i=2:n F(i)h*C(x(i);endT=su(F);Tn=_+T2;图像: 正弦 余弦3.32 复合新普斯求积公式将区间划分为n等分,在每个子区间上采用辛普森公式,若记则得 称为复合辛普森求积公式。程序如下:正弦unctin Sn=fhx(a,b,n)h=(b)n; k=0: (k+)=a+; x_k(k+1)=(k+1)1/2h; i(x(+1)=0)|(x_k(k+)=) x(k+1)1(10); x_(k+1)1(-0); endndS1h/6*(S(x()+S(+));for i=2:n

8、 F_1(i)=h/*SS(x(i);enfr j=1:n F_2(j)2*h3*SS(x();nd_=s(_1)+sum(_2);S_=S1+S2;余弦:fction S_nfhps(,n)(b-a)/n;for k=0:n x()=a+h; x(1)x(k1)+1/; if((k)=0)|(x_(+)=0) (k1)=10(-10); _k(k1)=0(-10); nndS1h6(CC((1))+CC(x(n+1)));for i=:n F_1()=h/3*CC(x(i);nor j=: F_2(j)2h3*C(x_k(j);ndS_2=sum(F1)+sm(F);_n=S_+S_2;图像

9、与复合梯形所得图像基本相同,深入分析两只复合函数的优劣,对于积分函数 假设=1,则将区间0,划分为8等份,应用复合梯形求得T80。94569而如果将0,1分为4等份,应用复合辛普森有S40.946032通过参考数值分析(李庆阳)的结论,发现无论是复合梯形公式还是复合辛普森公式,最终结果都会随着h值的减小而更加精确.对复合梯形公式和复合辛普森公式计算出的结果进行比较,发现复合梯形法的结果只有两位有效数字,而复合辛普森的结果却有六位有效数字,所以复合辛普森公式计算出的结果更加的精确。4、插值型的求积公式cl,cear0=0:05:5; = n 1. 0。5403 0。0472 0.201 0。20

10、 -0。300 0。67 -0。164 0.468 0。0567;所求积分函数的数值pp=sae(x0,0) ; 默认的边界条件,gang边界条件orat gcazip。coef 显示每个区间上三次多项式的系数s=qual((t)ppvl(pp,t),5)%求积分fomat 恢复短小数的显示格式x=0:0。1:5;=co(x)x;y1=splne(0,y,x);z=0;holdonlot(x,z,y,k-,x,y1,)plot(x0,y,)hold offeax0=0:0.5:;0= f 17552 0.5403 0042 。2081 -.3205 0.300 026 -0.1634 -0。0

11、468 0.057; %所求积分函数的数值p=sape(x0,y0) ; %默认的边界条件,Lagrang边界条件omat o azhi=pp。coefs 显示每个区间上三次多项式的系数qud()ppvl(pp,t),0,5) 求积分foat 恢复短小数的显示格式x0:0。1:;=cos()/x;y1=line(0,y0,x);0x;holdnplt(x,z,x,k,x,y1,r)pot(x0,y0,*)hol f如图所示:5、高斯求积公式funtn ql,A,xk=gj(un,a,b,n,tol)if nrn a=1;b=;n=7;t=1-8;elsef nrgi= n7;tol=1e-8;

12、elif nargin= tol=1e8;lsei narin=2nagin5 eror( Numbr of Inp Agumnts Is Wrn!);end% 计算求积节点syms xpsymoy(dif(-1)(n+1),n1)/(2*ct();tk=rots(p); 求积节点 计算求积系数Aros(+1,1);fi=1:+1 xk=tk; xkt(i)=; p=poly(xk); fp=(x)oyvl(pn,)/olyva(n,t(i); A(i)=qdl(p,1,1,tl); % 求积系数end积分变量代换,将a,变换到-1,1xk=(ba)/2t+(+a)/2;% 检验积分函数fun有效性un=h(fun,ectorze);计算变量代换之后积分函数的值S=fun(x)(b-a)/;计算积分值=sum(AkS); 计划表7月3号熟悉问题,准备工作,借阅相应的资料,搞清楚题目的用意题目要求多种方法计算,并尽量减少函数的调用。7.4 归纳总结多种数值求积的方法,找到各种方法对应的tlab程序。梯形辛普森公式复化辛普森、复化梯形高斯勒让德插值7。5 编写程序,对所找的方法逐一处理编程,思考跟好的方法.运行编程结果,进行检查改进7。 编写报告总结,对程序进行系统性总结,完成课程设计7。修改论文,修改程序,检查修正出现的错误

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1