ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:30.41KB ,
资源ID:9385494      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9385494.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(费托合成.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

费托合成.docx

1、费托合成费 - 托合成最早是由德国科学家 Frans Fischer 和 Hans Tropsch 于 1923 首先发现的, 就以他们名字的第一字母即 F-T 命名的, 简称 F-T 合成或费 - 托合成(主要反应是 nCO+2nH2= nCH2+nH2O。研究方向主要包括几个方面:催化剂(包括催化剂的制备、表征、组成以及活 性选择性研究) ,费 - 托合成反应机理(包括反应动力学和反应机理,费 - 托合成反应比较复杂,虽然反应物很简单,但是产物很复杂,相关机理研究一直没有中断,关于机理,说法很 多,但一直没有很明确的定论) ,费-托合成反应器研究(也是比较重要的一个分支,现在主 要集中在反

2、应器的结构与改进研究方面, 重点集中在浆态床反应器) ,费- 托合成工业化研究 (包括工业催化剂、工艺以及工业反应器的开发和改进,这是最大的一块) 。再讲讲研究单位, 在国外除了高校和科研院所外主要集中在能源公司和催化剂公司, 比 如已经工业化应用的南非 Sasol ,荷兰 Shell 两家,还有其他一些没有大规模工业应用,只 是中试开发的公司, 这些公司主要分为以下几种: 大的石油公司如 Exxon Mobil 、 Statoil 、 BP、 ConocoPhillips 、 Chevron ;专业做合成油的公司如 Rentech 、 Syntroleum ;还有一些 专业做催化剂的公司如

3、Johnson Matthey 、 Albemarle 等。在国内, 研究大部分还是集中在高校和科研院所, 比如山西煤化所 (已经做到工业化示 范装置, 16 万吨级别的,这是国内最先进的) ,大连化物所(除了基础研究外,也作了工业 化应用,主要是和中石化合作,也和 BP有合作,现在在浙江镇海有一套天然气液化 10吨/天的中试装置) ,这两家是国内科研院所的领头羊,再就是高校系统(大部分做一些基础研 究),做得比较有系统地的包括厦门大学、 中国石油大学,北京大学(寇元做了水相 Ru的费-托合成),浙江工业大学,四川大学、中南民族大学,还有其他一些学校做的规模比较小就 不一一列举了。 除了以上一

4、些高校和科研院所外, 就是一些公司企业了,包括中石化、 中石 油、中海油下属的一些研究院和催化剂公司,除此之外,还有兖矿、神华、凯迪电力、金巢 国际等,还有一些企业是跟上述一些科研院所、企业及高校合作开发的,这里就不提了。上面对国内外费 -托合成研究的整体情况作了一个简单的介绍。先说说我们课题组的情 况吧我们课题组是从 02 年开始组建, 老板是在南非 wits 大学(也叫金山大学, 南非是做费 -托研究最牛的, 金山大学是南非开展费 -托合成基础研究和工业化研究最好的两所高校之一, 另外一所是开普敦大学,里面有一位做费 -托的牛人, M. E. Dry ,做费 - 托应该都知道)读 的博士,

5、 后来在美国肯塔基大学应用能源研究中心做了两年博后和两年研究员, 这个研究中心是美国能源部所属,是美国做费 -托合成的主要单位之一,这个研究中心的负责人之一是 B. H. Davis (我老板的导师) , B. H. Davis 和 UC Berkeley 的 Enrique Iglesia 合作进行过费 -托合成催化剂研究, Enrique Iglesia 是催化界的大牛, Berkeley 还有两位做过费 -托合成研究的是 Gabor A. Somorjai 和 Alexis T. Bell 。我们课题组的研究现在主要集中在两个方面, 基础研究包括费 - 托合成催化剂的研究 (结 合活性测

6、试和表征研究催化剂的组成、 制备以及活化方法对催化剂活性、 选择性以及失活的影响,也做一些催化剂载体的修饰改性,新型先进材料的应用等)和费 - 托合成反应机理研 究(包括失活机理和反应机理,主要采用一些原位表征手段以及同位素示踪等方法) ,除了 基础研究, 我们也开展工业催化剂开发, 现在开发的钴和铁基催化剂已经应用到国内的中试 装置上。费- 托合成(煤或天然气间接液化)介绍间接液化首先将原料煤与氧气、 水蒸汽反应将煤全部气化, 制得的粗煤气经变换、 脱硫、 脱碳制成洁净的合成气 (C0+H2,合成气在催化剂作用下发生合成反应生成烃类, 烃类经进一步加工可以生产汽油、柴油和 LPG等产品。在煤

7、炭液化的加工过程中, 煤炭中含有的硫等有害元素以及无机矿物质 (燃烧后转化成 灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家 Frans Fischer 和 Hans Tropsch 于 1923 首先发现的并以他们名字的第一字母即 F-T命名的,简称F-T合成或费-托合成。依靠间接液化技术, 不但可以从煤炭中提炼汽油、 柴油、煤油等普通石油制品, 而且还可以提炼出航 空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。自从 Fischer 和 Tropsch 发现在碱化的铁催化剂上可生成烃

8、类化合物以来,费 -托合成 技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。费 -托合成率先在德国开始工业化应用, 1934年鲁尔化学公司建成了第一座间接液化生产装置, 产量为 7万吨 /年,到 1944年,德国共有 9 个工厂共 57 万吨 /年的生产能力。在同一时期,日本、法国、中国也有 6套装置建成。二十世纪五十年代初, 中东大油田的发现使间接液化技术的开发和应用陷入低潮, 但南非是例外。 南非因其推行的种族隔离政策而遭到世界各国的石油禁运, 促使南非下决心从根本上解决能源供应问题。 考虑到南非的煤炭质量较差, 不适宜进行直接液化 ,经过反复论证 和方案比较,最终选择了使用煤炭间接

9、液化的方法生产石油和石油制品。 SAS0LI 厂于 1955年开工生产,主要生产燃料和化学品。 20世纪70年代的能源危机促使 SASOL建设两座更大的煤基费 -托装置,设计目标是生产燃料。当工厂在 1980 和 1982 年建成投产的时候,原油的价格已经超过了 30美元/桶。此时SAS0啲三座工厂的综合产能已经大约为 760万吨/年。由于SASOL生产规模较大,尽管经历了原油价格的波动但仍保持赢利。南非不仅打破了石 油禁运,而且成为了世界上第一个将煤炭液化费 -托合成技术工业化的国家。 1992 和 1993 年,又有两座基于天然气的费 -托合成工厂建成,分别是南非 Mossgas 100

10、万吨/年和壳牌 在马来西亚 Bintulu 的 50 万吨 / 年的工厂。除了已经运行的商业化间接液化装置外,埃克森美孚( Exxon-Mobil ),英国石油(BP-Amoco),美国大陆石油公司(ConocoPhillips )和合成油公司(Syntroleum )等也正 在开发自己的费 - 托合成工艺,转让许可证技术,并且计划在拥有天然气的边远地域来建造 费- 托合成天然气液化工厂。F-T 合成的主要化学反应F-T 合成的主反应:生成烷烃: nCO+(2n+1)H2 = CnH2n+2+nH2O生成烯烃: nCO+(2n)H2 = CnH2n+nH2O 另外还有一些副反应,如:生成甲烷:

11、 CO+3H2 = CH4+H2O生成甲醇: CO+2H2 = CH3OH生成乙醇: 2CO+4H2 = C2H5OH+ H2O积炭反应: 2CO = C+CO2除了以上 6 个反应以外, 还有生成更高碳数的醇以及醛、 酮、 酸、酯等含氧化合物的副 反应。费- 托合成催化剂合成催化剂主要由 Co Fe、Ni、Ru等周期表第VHI族金属制成,为了提高催化剂的活 性、稳定性和选择性,除主成分外还要加入一些辅助成分,如金属氧化物或盐类。 大部分催化剂都需要载体, 如 氧化铝、 二氧化硅、 高岭土或硅藻土 等。合成催化剂制备后只有经 CO+H2 或H2还原活化后才具有活性。目前,世界上使用较成熟的间接

12、液化催化剂主要有 铁系和钴系两大类,SASOI使用的主要是铁系催化剂。 在SASOL固定床和浆态床反应器中使用的是沉淀铁催化剂,在流化床反应器中使用的是熔铁催化剂 。F-T 合成反应器SASOL自1955年首次使用固定床反应器实现商业化生产以来,紧紧抓住反应器技术和 催化剂技术开发这两个关键环节, 通过近五十年的持之以恒的研究和开发, 在煤间接液化费 -托合成工艺开发中走出了一条具有 SASOL特色的道路。迄今已拥有在世界上最为完整的固定床、循环流化床、固定流化床和浆态床商业化反应器的系列技术。1 固定床反应器( Arge 反应器) 固定床反应器首先由鲁尔化学 ( Ruhrchemir )和鲁

13、齐( Lurge )两家公司合作开发而成, 简称 Arge 反应器。 1955 年第一个商业化 Arge 反应器在南非建成投产。反应器直径 3 米, 由2052根管子组成,管内径 5厘米,长12米,体积40m3;管外为沸腾水,通过水的蒸发 移走管内的反应热, 产生蒸汽。 管内装填了挤出式铁催化剂。 反应器的操作条件是 225C, 2.6MPa。大约占产品50%的液蜡顺催化剂床层流下。基于 SASOL勺中试试验结果,一个操作压力4.5 MPa的Arge反应器在1987年投入使用。管子和反应器的尺寸和 Arge反应器基本一致。通常多管固定床反应器的径向温差为大约 24 C。轴向温度差为1520 G

14、为防止催化剂失活和积碳, 绝不可以超过最高反应温度, 因为积碳可导致催化剂破碎和反应管堵塞, 甚至需要更换催化剂。固定床中铁催化剂的使用温度不能超过 260 C,因为过高的温度会造成积碳并堵塞反应器。为生产蜡,一般操作温度在 230 C左右。最大的反应器的设计能力是 1500 桶/ 天。固定床反应器的优点有: 易于操作; 由于液体产品顺催化剂床层流下, 催化剂和液体产 品分离容易,适于费-托蜡生产。由于合成气净化厂工作不稳定而剩余的少量的 H2S可由催化剂床层的上部吸附, 床层的其它部分不受影响。 固定床反应器也有不少缺点: 反应器制 造昂贵。高气速流过催化剂床层所导致的高压降和所要求的尾气循

15、环, 提高了气体压缩成本。费-托合成受扩散控制要求使用小催化剂颗粒,这导致了较高的床层压降。由于管程的压降 最高可达0.7 MPa反应器管束所承受的应力相当大。大直径的反应器所需要的管材厚度非 常大,从而造成反应器放大昂贵。 另外,装填了催化剂的管子不能承受太大的操作温度变化。 根据所需要的产品组成, 需要定期更换铁基催化剂; 所以需要特殊的可拆卸的网格, 从而使 反应器设计十分复杂。重新装填催化剂也是一个枯燥和费时的工作,需要许多的维护工作, 导致相当长的停车时间;这也干扰了工厂的正常运行。2 浆态床反应器德国人在上世纪的 40 和 50 年代曾经研究过三相鼓泡床反应器, 但是没有商业化。

16、SASOL 的研发部门在二十世纪七十年代中期开始了对浆态床反应器的研究。 1990 年研发有了突破性进展,一个简单而高效的蜡分离装置成功地通过了测试。 100桶/天的中试装置于 1990年正式开车。SASOL于 1993年5月实现了 ID=5m、20m高,产能为2500桶/天的浆态床反应器 的开工。SASOL勺三相浆态床反应器(Slurry Phase Reactor )可以使用铁催化剂生产蜡、燃料 和溶剂。压力2.0 MPa,温度高于200C。反应器内装有正在鼓泡的液态反应产物(主要为 费-托产品蜡)和悬浮在其中的催化剂颗粒。 SASOL浆态床技术的核心和创新是其拥有专利的蜡产物和催化剂实现

17、分离的工艺; 此技术避免了传统反应器中昂贵的停车更换催化剂步骤。 浆态床反应器可连续运转两年,中间仅维护性停车一次。反应器设计简单。 SASOL浆态床技术的另一专利技术是把反应器出口气体中所夹带的“浆”有效地分离出来。典型的浆态床反应器为了将合成蜡与催化剂分离,一般内置 23层的过滤器,每一层过滤器由若干过滤单元组成,每一组过滤单元又由 3 4 根过滤棒组成。正常操作下,合成 蜡穿过过滤棒排出, 而催化剂被过滤棒挡住留在反应器内。 当过滤棒被细小的催化剂颗粒堵 塞时可以采用反冲洗的方法进行清洗。 在正常工况下一部分过滤单元在排蜡, 另一部分在反 冲洗,第三部分在备用。另为了将反应热移走,反应器

18、内还设置 23层的换热盘管,进入管内的是锅炉给水, 通过水的蒸发移走管内的反应热, 产生蒸汽。 通过调节汽包的压力来控 制反应温度。 此外在反应器的下部设有合成气分配器, 上部设有除尘除沫器。 其操作过程如下:合成气经过气体分配器在反应器截面上均匀分布, 在向上流动穿过由催化剂和合成蜡组 成的浆料床层时,在催化剂作用下发生 FT合成反应。生成的轻烃、水、 C02和未反应的气体一起由反应器上部的气相出口排出, 生成的蜡经过内置过滤器过滤后排出反应器, 当过滤 器发生堵塞导致器内器外压差过大时,启动备用过滤器,对堵赛的过滤器应切断排蜡阀门, 而后打开反冲洗阀门进行发冲洗, 直至压差消失为止。 为了

19、维持反应器内的催化剂活性, 反 应器还设置了一个新鲜催化剂 /蜡加入口和一个催化剂 / 蜡排出口。可以根据需要定期定量将 新鲜催化剂加入同时排出旧催化剂。浆态床反应器和固定床相比要简单许多, 它消除了后者的大部分缺点。 浆态床的床层压 降比固定床大大降低, 从而气体压缩成本也比固定床低很多。 可简易地实现催化剂的在线添 加和移走。 浆态床所需要的催化剂总量远低于同等条件下的固定床, 同时每单位产品的催化 剂消耗量也降低了 70%。由于混合充分,浆态床反应器的等温性能比固定床好,从而可以在 较高的温度下运转, 而不必担心催化剂失活、 积碳和破碎。在较高的平均转化率下,控制产 品的选择性也成为可能

20、,这就使浆态床反应器特别适合高活性的催化剂, SASOL现有的浆态床反应器的产能是 2500桶/天, 2003 年为卡塔尔和尼日利亚设计的是 ID=9.6m 、 17000桶/天的商业性反应器。SASOL认为设计使用 Co催化剂的能力达到 22300桶/天的反应器也是可 行的,这在经济规模方面具有很大的优势。3 循环流化床反应器1955 年前后,萨索尔在其第一个工厂( Sasol I )中对美国 Kellogg 公司开发的循环流 化床反应器(CFB进行了第一阶段的 500倍的放大。放大后的反应器内径为 2.3米,46米高,生产能力 1500 桶/ 天。此后克服了许多困难, 多次修改设计和催化剂

21、配方,这种后来命 名为Synthol的反应器成功地运行了 30年。后来SASOL!过增加压力和尺寸, 反应器的处 理能力提高了 3倍。 1980年在 SASOL II、 1982年在 SASOL III 分别建设了 8台 ID=3.6m、 生产能力达到 6500 桶/ 天的 Synthol 反应器。使用高密度的铁基催化剂。循环流化床的压 降低于固定床, 因此其气体压缩成本较低。 由于高气速造成的快速循环和返混, 循环流化床 的反应段近乎处于等温状态,催化剂床层的温差一般小于 2 C。循环流化床中,循环回路中的温度的波动范围为 30 C左右。循环流化床的一个重要的特点是可以加入新催化剂, 也可以

22、移走旧催化剂。循环流化床也有一些缺点:操作复杂;新鲜和循环物料在 200 C和2.5 MPa条件下进入反应器底部并夹带起部分从竖管和滑阀流下来的 350 C的催化剂。在催化剂沉积区域,催化剂和气体实现分离。 气体出旋风分离器而催化剂由于线速度降低从气体中分离出来并回 到分离器中。从尾气中分离细小的催化剂颗粒比较困难。一般使用旋风分离器实现该分离, 效率一般高于 99.9%。但由于通过分离器的高质量流率, 即使 0.1% 的催化剂也是很大的量。所以这些反应器一般在分离器下游配备了油洗涤器来脱除这些细小的颗粒。 这就增加了设备成本并降低了系统的热效率。 另外在非常高线速度的部位, 由碳化铁颗粒所引

23、起的磨损要求使用陶瓷衬里来保护反应器壁, 这也增加了反应器成本和停车时间。 Synthol 反应器一般在2.5 MPa和340 C的条件下操作。4 固定流化床反应器鉴于循环流化床反应器的局限和缺陷, SASOL开发成功了固定流化床反应器,并命名为SASOL Advaneed Synthol (简称为 SAS 反应器。固定流化床反应器由以下部分组成: 含气体分布器的容器; 催化剂流化床; 床层内的冷 却管;以及从气体产物中分离夹带催化剂的旋风分离器。固定流化床操作比较简单。 气体从反应器底部通过分布器进入并通过流化床。 床层内催 化剂颗粒处于湍流状态但整体保持静止不动。 和商业循环流化床相比,

24、它们具有类似的选择 性和更高的转化率。 因此,固定流化床在 SASOL得到了进一步的发展, 一个内径1米的演示装置在 1983年开车。一个内径 5米的商业化装置于 1989年投用并满足了所有的设计要求。 1995年6月,直径8米的SAS反应器商业示范装置开车成功。 1996年SASOL决定用8台SAS反应器代替 SASOLII 和 SASOLIII 厂的 16台 Synthol 循环流化床反应器。其中 4台直径 8 米的SAS反应器,每个的生产能力是 11000桶/天;另外四个直径10.7米的反应器,每个生 产能力是20000桶/天。这项工作于1999年完成,2000年SASOL又增设了第9台

25、SAS反应 器。固定流化床反应器的操作条件一般是 2.04.0 MPa大约340C,使用的一般是和循环流化床类似的铁催化剂。在同等的生产规模下, 固定流化床比循环流化床制造成本更低, 这是因为它体积小而且 不需要昂贵的支承结构。由于SAS反应器可以安放在裙座上,它的支撑结构的成本仅为循环 流化床的 5%。因为气体线速较低,基本上消除了磨蚀从而也不需要定期的检查和维护。 SAS反应器中的压降较低,压缩成本也低。积碳也不再是问题。SAS催化剂的用量大约是 Sy nthol 的 50%。由于反应热随反应压力的增加而增加,所以盘管冷却面积的增加使操作压力可高达 40 巴,大大地增加了反应器的生产能力。

26、间接液化工艺1 SASOL工艺萨索尔 (Sasol ) 是南非煤炭、 石油和天然气股份有限公司 (South Afriean Coal, Oil and Gas Corp.) 的简称。南非缺乏石油资源但却蕴藏有大量煤炭资源。为了解决当地石油的需求 问题,于1951年筹建了 SASOL公司。1955年建成了第一座由煤生产液体运输燃料的 SASOL-I厂。建设由美国凯洛格 (M.W.Kellogg CO.) 公司及原西德的阿奇公司 (Arge 即 Arbeit Gemeinshaft Lurgi und Ruhrehemie) 承包。阿奇建造的五台固定床反应器作为第一段,年 产量为 53,000t

27、 初级产品,开洛格建造了两套流化床反应器 (Synthol) ,设计年产液体燃料 166000t ,在 SASOL-I 厂成功的经验上, 1974年开始,南非在赛昆达地区开工建设了 SASOL-II 厂,并于 1980 年建成投产。 1979年又在赛昆达地区建设了 SASOL-III 厂,规模与 II 厂相同,造气能力大约是 SASOL-I厂的8倍。随着时代的变迁和技术的进步, SASOL三个厂的生产设备、生产能力和产品结构都发生了很大的变化。目前三个厂年用煤 4590 万 t ,其中 I厂 650 万 t/ 年, II 厂 和 III 厂 3940 万 t/ 年。主要产品是汽油、柴油、蜡、氨

28、、烯烃、聚 合物、醇、醛等 113种,总产量达 760万 t ,其中油品大约占 60%。2 SHELL公司的SMDS成工艺多年来,荷兰皇家 Shell 石油公司一直在进行从煤或天然气基合成气制取发动机燃料的 研究开发工作。尤其对一氧化碳加氢反应的 Schulz-Flory 聚合动力学的规律性进行了深入 的研究, 认为在链增长的 alpha 值高的条件下, 可以高选择性和高收率地合成高分子长链烷 烃,同时也大大降低了低碳气态烃的生成。在 1985 年第五次合成燃料研讨会上,该公司宣 布已开发成功 F-T 合成两段法的新技术 SMDS(Shell Middle Distillate Synthes

29、is) 工艺, 并通过中试装置的长期运转。SMDS成工艺由一氧化碳加氢合成高分子石蜡烃一 HPS(Heavy Paraffi n Sy nthesis) 过程和石蜡烃加氢裂化或加氢异构化 HPC(HeavyParaffin Coversion) 制取发动机燃料两段 构成。 Shell 公司的报告指出,若利用廉价的天然气制取的合成气 (H2/CO = 2.0) 为原料,采用SMDS工艺制取汽油、煤油和柴油产品,其热效率可达 60%而且经济上优于其他 F-T合成技术。Shell 公司采用自己开发的热稳定性较好的钴系催化剂高选择性地合成了长链石蜡烃(C50),其链增长alpha值可控制在0.800.

30、94之间。HPS技术采用管式固定床反应器。 为了提高转化率, 合成过程分两段进行。 第一段安排了 3 个反应器。第二段只设一个反应器。 每一段设有单独的循环气体压缩机。大约总产量的 85%在第一段生成,其余 15%在第二段生成。反应系统操作参数如下:合成气组成 H2/CO=2.O,反应压力2.0 MPa4.0MPa,反应温度200 C240 C,全过程 CC转化率:95% 单程单段 CO转化率40%3 中科院山西煤化所浆态床合成技术的开发自上世纪 70 年代末开始,中科院山西煤化所一直从事间接液化技术的开发,并取得了 令人瞩目的成绩。 除了系列催化剂的开发外, 还对固定床和浆态床合成技术进行了

31、较系统的 研究。80年代初提出了将传统的 F-T 合成与沸石分子筛特殊形选作用相结合的两段法合成 (简 称MFT),先后完成了实验室小试,工业单管模试中间试验(百吨级)和工业性试验 (2000吨/年)。除了 MFT合成工艺之外,其后,山西煤化所还开发了浆态床一固定床两段法工艺, 简称SMFT合成。多年来山西煤化所对铁系和钴系催化剂进行了较系统的研究。共沉淀 Fe-Cu 催化剂(编号为 ICC-IA) 自1990年以来一直在实验室中进行固定床试验, 主要目的是获得动力学参数。 Fe-Mn催化剂(ICC-IIA、ICC-IIB)和钴催化剂(ICC-IIIA ICC-IIIB ICC-IIIC)的研

32、究集中 在催化剂的优化和动力学研究以及过程模拟。其中 ICC-I 型催化剂用于重质馏分工艺,ICC-II 型催化剂用于轻质馏分工艺。 ICC-IA 催化剂已经定型,实现了中试放大生产,并进 行了充分的中试验证, 完成了累计 4000小时的中试工艺试验, 稳定运转 1500 小时,满负荷 运转达 800 小时。 ICC-IIA 型催化剂也已经实现中试放大生产,在实验室进行了长期运转试 验,最长连续运转达 4800小时。 此外,中科院山西煤化所还对 ICC-IIIA 钴催化剂进行了研 究和开发。目前,用于浆态床的 ICC-IA 和 ICC-IIA 催化剂成本大幅度下降,成品率明显提 高,催化剂性能尤其是产品选择性得到明显提高, 在实验室模拟验证浆态床装置上, 催化剂 与液体产物的分离和催化剂磨损问题得到根本性的解决, 从而从技术上突破了煤基合成油过 程的技术经济瓶颈。19992001年国家和中科院加大了对浆态床合成油技术攻关的投入力度, 2

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1