ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:67.51KB ,
资源ID:9366453      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9366453.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(abaqus子程序.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

abaqus子程序.docx

1、abaqus子程序1.1.37UMATHTUser subroutine to define a materials thermal behavior.Product:Abaqus/StandardWarning:The use of this subroutine generally requires considerable expertise. You are cautioned that the implementation of any realistic thermal model requires significant development and testing. Init

2、ial testing on models with few elements under a variety of boundary conditions is strongly recommended.References “User-defined thermal material behavior,”Section 23.8.2 of the Abaqus Analysis Users Manual *USER MATERIAL “Freezing of a square solid: the two-dimensional Stefan problem,”Section 1.6.2

3、of the Abaqus Benchmarks Manual “UMATHT,”Section 4.1.22 of the Abaqus Verification ManualOverviewUser subroutineUMATHT: can be used to define the thermal constitutive behavior of the material as well as internal heat generation during heat transfer processes; will be called at all material calculati

4、on points of elements for which the material definition includes a user-defined thermal material behavior; can be used with the procedures discussed in“Heat transfer analysis procedures: overview,”Section 6.5.1 of the Abaqus Analysis Users Manual; can use solution-dependent state variables; must def

5、ine the internal energy per unit mass and its variation with respect to temperature and to spatial gradients of temperature; must define the heat flux vector and its variation with respect to temperature and to gradients of temperature; must update the solution-dependent state variables to their val

6、ues at the end of the increment; can be used in conjunction with user subroutineUSDFLDto redefine any field variables before they are passed in; and is described further in“User-defined thermal material behavior,”Section 23.8.2 of the Abaqus Analysis Users Manual.Use of subroutineUMATHTwith coupled

7、temperature-displacement elementsUser subroutineUMATHTshould be used only with reduced-integration or modified coupled temperature-displacement elements if the mechanical and thermal fields are not coupled through plastic dissipation. No such restriction exists with fully integrated coupled temperat

8、ure-displacement elements.User subroutine interfaceSUBROUTINE UMATHT(U,DUDT,DUDG,FLUX,DFDT,DFDG, 1 STATEV,TEMP,DTEMP,DTEMDX,TIME,DTIME,PREDEF,DPRED, 2 CMNAME,NTGRD,NSTATV,PROPS,NPROPS,COORDS,PNEWDT, 3 NOEL,NPT,LAYER,KSPT,KSTEP,KINC)C INCLUDE ABA_PARAM.INCC CHARACTER*80 CMNAME DIMENSION DUDG(NTGRD),F

9、LUX(NTGRD),DFDT(NTGRD), 1 DFDG(NTGRD,NTGRD),STATEV(NSTATV),DTEMDX(NTGRD), 2 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3) user coding to define U,DUDT,DUDG,FLUX,DFDT,DFDG, and possibly update STATEV, PNEWDT RETURN ENDVariables to be definedUInternal thermal energy per unit mass,U, at the end of

10、 increment. This variable is passed in as the value at the start of the increment and must be updated to its value at the end of the increment.DUDTVariation of internal thermal energy per unit mass with respect to temperature, evaluated at the end of the increment.DUDG(NTGRD)Variation of internal th

11、ermal energy per unit mass with respect to the spatial gradients of temperature, at the end of the increment. The size of this array depends on the value ofNTGRDas defined below. This term is typically zero in classical heat transfer analysis.FLUX(NTGRD)Heat flux vector, at the end of the increment.

12、 This variable is passed in with the values at the beginning of the increment and must be updated to the values at the end of the increment.DFDT(NTGRD)Variation of the heat flux vector with respect to temperature, evaluated at the end of the increment.DFDG(NTGRD,NTGRD)Variation of the heat flux vect

13、or with respect to the spatial gradients of temperature, at the end of the increment. The size of this array depends on the value ofNTGRDas defined below.Variables that can be updatedSTATEV(NSTATV)An array containing the solution-dependent state variables.In an uncoupled heat transfer analysisSTATEV

14、is passed intoUMATHTwith the values of these variables at the beginning of the increment. However, any changes inSTATEVmade in user subroutineUSDFLDwill be included in the values passed intoUMATHT, sinceUSDFLDis called beforeUMATHT. In addition, ifUMATHTis being used in a fully coupled temperature-d

15、isplacement analysis and user subroutineCREEP, user subroutineUEXPAN, user subroutineUMAT, or user subroutineUTRSis used to define the mechanical behavior of the material, those routines are called before this routine; therefore, any updating ofSTATEVdone inCREEP,UEXPAN,UMAT, orUTRSwill be included

16、in the values passed intoUMATHT.In all casesSTATEVshould be passed back fromUMATHTas the values of the state variables at the end of the current increment.PNEWDTRatio of suggested new time increment to the time increment being used (DTIME, see below). This variable allows you to provide input to the

17、 automatic time incrementation algorithms in Abaqus/Standard (if automatic time incrementation is chosen).PNEWDTis set to a large value before each call toUMATHT.IfPNEWDTis redefined to be less than 1.0, Abaqus/Standard must abandon the time increment and attempt it again with a smaller time increme

18、nt. The suggested new time increment provided to the automatic time integration algorithms is PNEWDTDTIME, where thePNEWDTused is the minimum value for all calls to user subroutines that allow redefinition ofPNEWDTfor this iteration.IfPNEWDTis given a value that is greater than 1.0 for all calls to

19、user subroutines for this iteration and the increment converges in this iteration, Abaqus/Standard may increase the time increment. The suggested new time increment provided to the automatic time integration algorithms isPNEWDTDTIME, where thePNEWDTused is the minimum value for all calls to user sub

20、routines for this iteration.If automatic time incrementation is not selected in the analysis procedure, values ofPNEWDTthat are greater than 1.0 will be ignored and values ofPNEWDTthat are less than 1.0 will cause the job to terminate.Variables passed in for informationTEMPTemperature at the start o

21、f the increment.DTEMPIncrement of temperature.DTEMDX(NTGRD)Current values of the spatial gradients of temperature,TIME(1)Value of step time at the beginning of the current increment.TIME(2)Value of total time at the beginning of the current increment.DTIMETime increment.PREDEFArray of interpolated v

22、alues of predefined field variables at this point at the start of the increment, based on the values read in at the nodes.DPREDArray of increments of predefined field variables.CMNAMEUser-defined material name, left justified.NTGRDNumber of spatial gradients of temperature.NSTATVNumber of solution-d

23、ependent state variables associated with this material type (defined as described in“Allocating space” in “User subroutines: overview,”Section 15.1.1 of the Abaqus Analysis Users Manual).PROPS(NPROPS)User-specified array of material constants associated with this user material.NPROPSUser-defined num

24、ber of material constants associated with this user material.COORDSAn array containing the coordinates of this point. These are the current coordinates in a fully coupled temperature-displacement analysis if geometric nonlinearity is accounted for during the step (see“Procedures: overview,”Section 6

25、.1.1 of the Abaqus Analysis Users Manual); otherwise, the array contains the original coordinates of the point.NOEL :Element number.NPT :Integration point number.LAYER :Layer number (for composite shells and layered solids).KSPT: Section point number within the current layer.KSTEP: Step number.KINC:

26、 Increment number.Example:Using more than one user-defined thermal material modelTo use more than one user-defined thermal material model, the variableCMNAMEcan be tested for different material names inside user subroutineUMATHT, as illustrated below:IF (CMNAME(1:4) .EQ. MAT1) THEN CALL UMATHT_MAT1(

27、argument_list)ELSE IF(CMNAME(1:4) .EQ. MAT2) THEN CALL UMATHT_MAT2(argument_list)END IFUMATHT_MAT1andUMATHT_MAT2are the actual user material subroutines containing the constitutive material models for each materialMAT1andMAT2, respectively. SubroutineUMATHTmerely acts as a directory here. The argume

28、nt list can be the same as that used in subroutineUMATHT.Example:Uncoupled heat transferAs a simple example of the coding of user subroutineUMATHT, consider uncoupled heat transfer analysis in a material. The equations for this case are developed here, and the correspondingUMATHTis given. This probl

29、em can also be solved by specifying thermal conductivity, specific heat, density, and internal heat generation directly.First, the equations for an uncoupled heat transfer analysis are outlined.The basic energy balance iswhereVis the volume of solid material with surface areaS,is the density of the

30、material,is the material time rate of the internal thermal energy,qis the heat flux per unit area of the body flowing into the body, andris the heat supplied externally into the body per unit volume.A heat flux vectoris defined such thatwhereis the unit outward normal to the surfaceS. Introducing th

31、e above relation into the energy balance equation and using the divergence theorem, the following relation is obtained:The corresponding weak form is given bywhereis the temperature gradient andis an arbitrary variational field satisfying the essential boundary conditions.Introducing the backward difference integration algorithm:the weak form of the energy balance equation becomesThis nonlinear system is solved using Newtons method.In the above equations the thermal constitutive behavior of the material is given byAnd whereare state v

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1