ImageVerifierCode 换一换
格式:DOCX , 页数:32 ,大小:61.24KB ,
资源ID:9276284      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9276284.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(灰色系统GM11模型适用范围拓广.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

灰色系统GM11模型适用范围拓广.docx

1、灰色系统GM11模型适用范围拓广1999年1月系统工程理论与实践第1期灰色系统GM(1,1)模型适用范围拓广李希灿(山东水利专科学校,山东泰安271000)摘要研究了灰色系统GM(1,1)模型在建模过程中由于原始数列乘以不等于零的常数对模型值及预测值的影响,得出GM(1,1)模型完全适用于负数据序列建模的结论.关键词灰色系统模型灰色参数WideningofSuitableLimitsofGreySystemGM(1,1)ModelLiXican(ShandongHydraulicEngineeringCollege,Taian271000)AbstractInthispaper,westudy

2、thefactthataconstantwhichmultipliesalldatainthecoarseserieswouldinfluencethevaluesofmodelandprediction.TheresultthatGM(1,1)modelissuitabletonegativedatasequenceisobtained.Keywordsgreysystem;model;greyparameters1引言设有时间数据序列X(0)X(0)=x(t) t=1,2,n=x(0)(1),x(0)(2),x(0)(n)t对X(0)作一次累加生成(1-AGO),令x(1)(t)=6x(0

3、)(k),得生成数据序列X(1)k=1X(1)=x(1)(t) t=1,2,n=x(1)(1),x(1)(2),x(1)(n)n=x(0)(1),62x(0)(k),x(0)(k)k=16k=1利用序列X(1)可建立如下白化方程(1)+(1)dtaX=u式中,a,u为灰色参数.按最小二乘法求解(a,u)T=(BTB)-1BTYN本文于1997年7月15日收到 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.(1)(2)(3)(4)98系统工程理论与实践-B=1999年1月(x(1)(2)+x(1)(1

4、)2(x(1)(3)+x(1)(2)211-YN=(x(0)1(x2(1)(n)+x(1)(n-1)(2),x(0)(3),x(0)(n)Taa求出a,u后,解(3)式得微分方程x(1)(k)=x(0)(1)-e-a(k-1)+(5)对x(1)作一次累减生成,即得x(0)序列()()()x0(k)=x1(k)-x1(k-1)x(0)(k)=x(0)(1)-a(1-ea)e-a(k-1)(6)因此,给定原始数据序列(1)式,由式(2),(3),(4),(5),(6)即可建立GM(1,1)预测模型.但GM(1,1)建模时一般要求(1)式必须为“非负”数列.随着灰色理论研究的不断发展,GM(1,1)

5、模型应用越来越广泛,如变形观测中,利用监测网的多期观测数据建立GM(1,1)模型进行变形预测等,当时间数据序列为高差时,就可能为负数据序列.那么负数列是否能直接用于建模呢?为此本文加以讨论.首先导出灰色参数的显式表达式,由此对原始数据序列乘以不等于零的常数对预测结果及精度影响加以讨论,得出GM(1,1)建模完全适用于负数据序列的结论.2原始数据序列乘以不等于零常数对GM(1,1)模型参数及预测值的影响设原始数据序列(1)式乘以常数K0,K00,生成新的数据序列Y(0)Y(0)=K0x(0)(1),K0x(0)(2),K0x(0)(n)(7)y(0)(1),y(0)(2),y(0)(n)对数列Y

6、(0)类似式(2)(5)建模y(1)(k)=y(0)(1)-ea1a1(k-1)+a1(8)式中a1,u1为灰色参数,即-1T(a1,u1)T=(BTB1Y11B1)(9)其中-B1=(y(1)(2)+y(1)(1)2(y(1)(3)+y(1)(2)211-(y(1)(n)+y(1)(n-1)21(1)(k)=K0x(1)(k).首先有下面的命题成立.可以证明,y2T命题1 BT1B1 =K0 BB()()()Y1=(y0(2),y0(3),y0(n)T证记bi=-x(1)(i)+x(1)(i+1)2 1995-2005 Tsinghua Tongfang Optical Disc Co.,

7、Ltd. All rights reserved.第1期灰色系统GM(1,1)模型适用范围拓广=-6ix(0)(j)-(0)(i+1)i=1,2,n-1j=12x则b11n-11bbi2biBTB=1b2bn-121i=16n-i=1111=b=6n-1bbin-1n-16i=1其中6n-1n-1ibi=-x(0)(j)+(0i=16i=16j=12x)(i+1)n=-(n-1)x(0)(1)-6n-i+(0)i=22x(i)6n-1n-1i2bi2=x(0)(j)+2x(0)(i+1)i=16i=16j=1n=(n-1)(x(0)(1)2+2x(0)(1)6n-i+0)i=22x(in+6n

8、-i+(x(0)(i)2+)x(0)(i)x(0)(j)i=2426(2n-2j+1i0.i=1由(13)式及(11),(12)式,经化简整理得nBTB =6(n+2-i)i-n-(0)i)2i=242(x(+6(2n-2j+1)i-3n+3j-(i)x(0)(j)ijn2x(0)2同理nB1TB1 =6(n+2-i)i-n(y(0)(i)2i=24-2+6(2n-2j+1)i-3n+3j-(i)y(0)(j)2ijn2y(0)由(7),(14),(15)式得 BT1B1 =K20 BTB.证毕.命题2参数a1=a.证因为x(0)(i)=x(1)(i)-x(1)(i-1),i=2,3,n由(4

9、),(10)式,a=(BTB)-1BTYn-1-=6n-1bix(1)(2)-x(1)(1)i=1b1b2bn-1(1)BTBn-1b11x(3)-x(1)(2)-6i6n-1b21ix(1)(n)-x(1)(n-1)i=1i=1 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.99(9)(10)(11)(12)(13)(14)(15)100系统工程理论与实践1999年1月=BBTn-1bi-66n-1i=1n-1bib2i-i=1(x(1)(n)2-2(x(1)(1)2(16)-6n-1i=16(i

10、)(i)2nx(0)(i)i=2由式(11),a=BBTT-(i)n266nnxx(0)-(x(0)(1)2-i=1n6b6ii=1n-1nx(0)(i)i=2=BBn(0)22(n-1)xx(0)(x(0)(1)2+i+i=16xi=2(0)(0)(1)+6n(n-(0)i=2)x(0)(i)2(17)=BTB 6(i)i=26i=22n-i+1x(i)同理a1=B1B1T6y(0)(i)i=26ni=22-i+1y(0)(i)(18)由(7)式及命题1,(17),(18)式得a1=a.证毕.命题3u1=K0u证由(16)式及(11),(12)式u=BBTT66n-nxx(0)(i)(i)4

11、i=2n6n-1bi+2i=126n-1bi2i=16nx(0)(i)(1)2-n(x(0)(1)2n-i+i=1=BB(0)(n-1)(x(0)(1)+2x(0)i=26i=22x(0)(i)+-6ni+(x(0)(i)2+x(0)i=22ijn6(2n-2j+1)x(0)(i)x(0)(j)(i)222x(0)(1)6nn(i)+i=26nnx(0)(n-1)x(0)(1)+i=26nn-i+i=22x(0)(i)经整理化简后,u=ax(0)(1)+6x(0)T(i)BBn6i=22(x(0)(i)2+2ijn6n+2-j+22x(0)(i)x(0)(j)(19)同理u1=a1y(0)(1

12、)+6yT(0)(i)B1B16ni=22(y(0)(i)2+2ijn6n+2-j+22y(0)(i)y(0)(j)(20)由(7),(19),(20)式及命题1,2得u1=K0u.证毕.由(5),(8),(7)式及命题1,2,3可得()()y1(k)=K0x1(k)(21)证华.即常数乘以原始数列后的模型计算值等于常数与原始数列建模的模型计算值的乘积.(1)(k)缩小K0倍就等于以原由(21)式可知,Y(0)序列建模的模型值及精度是序列x(0)建模的K0倍,y始序列X(0)建模的模型计算值.(21)式的实践意义是:对于给定的时间数据序列建立GM(1,1)模型,采用不同单位建模,模型精度是相同

13、的.(1)(k)=-x(1)(k)推论当K0=-1时,y 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.(22)第1期灰色系统GM(1,1)模型适用范围拓广101(1)(k)亦为x(1)(k)的相反数.因此,对由(22)式,当X(0)为正数列时,Y(0)为对应的负数列,模型计算值y于负数据序列(序列中数据全为负数)也可以直接用于建立GM(1,1)模型.3应用“非负”数据序列拓广到负数据序列,具有重要的理论与实践意义,主要表GM(1,1)模型的建模条件从现在两方面.1)用于负数据序列建模设给定的负数据

14、序列Y(0)=y(0)(1),y(0)(2),y(0)(n),正数据序列X(0)=x(0)(1),x(0)(2),(0)(0)(0)(0)x(n),满足y(k)=K0x(k),且K0=-1,k=1,2,n.则Y建模有两种方法:(1)(k)由式(7),(8),(9)得y(1)(k),即y(1)(k)=K0x(1)(k)由(1)(5),(21)式得y显然,GM(1,1)建模条件拓广到负数据序列,为负数据序列直接建模提供了理论基础.2)用于GM(1,1)模型优化GM(1,1)模型优化就是对于给定的数据序列,寻找模型精度最优的灰色参数a,u.文献1证明了原始数据序列中每一数据增加同一常数a0对GM(1

15、,1)模型值及预测值均有影响,取不同的a0进行模拟计算,寻找模型精度最好的a0,就得到优化的GM(1,1)模型.由于GM(1,1)建模时,原来要求原始数据序列必须为非负的,所以原始数列加常数a0后仍必须满足非负条件.这就极大地限制了优化的范围.GM(1,1)建模条件由正数据序列拓广到负数据序列,就克服了这种局限性.下面以实例加以说明.已知原始数据序列X由(2)(5)式(0)Xx(0)=230,226,220,218,214,208,2010.02189119(k-1)(1)(k)=-10455.72e-令残差q(0)(k)=x(0)(k)-x(0)(k),得残差序列q(0)+10685.72显

16、然原点误差相对来看较大,为此进行模型优化,取后验误差C,绝对平均误差原点误差E0、残差E、方差、关联度G作为衡量模型精度的指标,取不同的a0模拟计算,各项指标列于表1.表1GM(1,1)模型优化指标表a0=0,-0.40,-1.50,1.30,1.99,0.58,-1.93数列类型正正正正正负负负CE1.04471.04461.09951.16451.81040.57580.81680.9944E01.25561.25551.31521.39262.53980.92221.03361.2030G10005000-100-200-233-300-10000.13500.13500.14140.1

17、4970.27240.09920.11110.1293-1.7812-1.7734-1.9287-2.123-5.24640.0297-1.2329-1.65620.55460.55460.55020.55030.68350.73390.60480.5587从表1可见,a0=-233时模型精度最高.故a0=-233时得到GM(1,1)优化模型.而a0=-233时数列为负数据,因此GM(1,1)建模条件未拓广时无法得最优化的模型.最后确定GM(1,1)模型为()()x1(k)=-30.00606e0.257818k-1+260.00606(下转第105页) 1995-2005 Tsinghua

18、Tongfang Optical Disc Co., Ltd. All rights reserved.第1期就业乘数新算法探讨表3新旧方法计算结果对比旧方法一、各部门就业乘数11农业21工业31建筑业41运输邮电业51商业饮食业61其他服务部门71居民收入平均二、平均就业增加量1.14L(I-A)-1FCL3105新方法1L(I-A)-L3(I-A3)-121350.870.870.740.861.123.991.952.051.871.992.342.112.18(I-A3)-1FC0.9122.07其中L(I-A)-1表示各部门增加单位最终需求(如出口)等,直接和间接所增加的劳动力需求量

19、(就业乘数);L(I-A)-1FC表示固定资本增加一个单位直接和间接所引起的劳动力需求量,可利用它计算增加公共投资而引起的新增劳动力就业人数.参考文献1国家统计局国民经济核算司11995年度中国投入产出表1北京:中国统计出版社,1997:1302国家统计局编1中国统计年鉴19971北京:中国统计出版社,1997:96973陈锡康1现代科学管理方法基础1北京:科学出版社4陈锡康1中国城乡经济占用产出分析1北京:科学出版社(上接第101页)4结语经上述讨论可知,灰色系统GM(1,1)建模条件可以拓广到负数据序列.这一拓广为负数据序列直接建模和GM(1,1)模型优化提供了理论基础.算例说明有助于提高

20、GM(1,1)模型精度,得到最优模型.参考文献1李留藏1灰色系统GM(1,1)模型的讨论1数学的实践与认识,1993(1):15222邓聚龙1灰色系统基本方法1武汉:华中理工大学出版社,1992 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.他们继续往前走。走到了沃野,他们决定停下。被打巴掌的那位差点淹死,幸好被朋友救过来了。被救起后,他拿了一把小剑在石头上刻了:“今天我的好朋友救了我一命。”一旁好奇的朋友问到:“为什么我打了你以后你要写在沙子上,而现在要刻在石头上呢?”另一个笑笑回答说:“当被一个

21、朋友伤害时,要写在易忘的地方,风会负责抹去它;相反的如果被帮助,我们要把它刻在心灵的深处,任何风都抹不去的。”朋友之间相处,伤害往往是无心的,帮助却是真心的。在日常生活中,就算最要好的朋友也会有摩擦,也会因为这些摩擦产生误会,以至于成为陌路。友情的深浅,不仅在于朋友对你的才能钦佩到什么程度,更在于他对你的弱点容忍到什么程度。学会将伤害丢在风里,将感动铭记心底,才可以让我们的友谊历久弥新!友谊是我们哀伤时的缓和剂,激情时的舒解剂;是我们压力时的流泻口,是我们灾难时的庇护所;是我们犹豫时的商议者,是我们脑子的清新剂。但最重要的一点是,我们大家都要牢记的:“切不可苛求朋友给你同样的回报,宽容一点,对

22、自己也是对朋友。”爱因斯坦说:“世间最美好的东西,莫过于有几个头脑和心地都很正直的朋友。”他们继续往前走。走到了沃野,他们决定停下。被打巴掌的那位差点淹死,幸好被朋友救过来了。被救起后,他拿了一把小剑在石头上刻了:“今天我的好朋友救了我一命。”一旁好奇的朋友问到:“为什么我打了你以后你要写在沙子上,而现在要刻在石头上呢?”另一个笑笑回答说:“当被一个朋友伤害时,要写在易忘的地方,风会负责抹去它;相反的如果被帮助,我们要把它刻在心灵的深处,任何风都抹不去的。”朋友之间相处,伤害往往是无心的,帮助却是真心的。在日常生活中,就算最要好的朋友也会有摩擦,也会因为这些摩擦产生误会,以至于成为陌路。友情的深浅,不仅在于朋友对你的才能钦佩到什么程度,更在于他对你的弱点容忍到什么程度。学会将伤害丢在风里,将感动铭记心底,才可以让我们的友谊历久弥新!友谊是我们哀伤时的缓和剂,激情时的舒解剂;是我们压力时的流泻口,是我们灾难时的庇护所;是我们犹豫时的商议者,是我们脑子的清新剂。但最重要的一点是,我们大家都要牢记的:“切不可苛求朋友给你同样的回报,宽容一点,对自己也是对朋友。”爱因斯坦说:“世间最美好的东西,莫过于有几个头脑和心地都很正直的朋友。”

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1