1、城市供水调度系统设计方案概述城市供水调度系统设计方案 1 给水系统控制和优化调度软硬件模式概述为了满足城市快速开展的需要,城市供水企业近年来不断采用新的技术、新的工艺,用以提高城市的供水能力和效劳质量。其中自来水厂监控系统在全国大多数城市得到广泛应用,还有一些城市的供水企业正在逐步采用GIS技术管理供水管网信息、用计算机实现收费营业电算化。这些先进的信息、计算机、通讯和自动控制等先进技术的应用,确实为供水企业的现代化运营解决了很多的实际问题。但是,我们也应该看到还有很多深层次的问题尚未得到卓有成效的解决,究其原因主要是因为:供水企业的运营包括从产水、输配水、管理和收费多个环节,仅在某一环节采用
2、新技术并不能解决所有问题;企业运营的各个环节是密切关联的,别离的系统无法实现整个运营的系统性;系统运营的很多因素是有统计规律和相关性的,目前的系统无法从这些规律和相关性得到可以辅助决策的信息。因此,要到达自来水企业的最优化运营,就需要系统分析企业的运营模型,找到每个环节的相关性,获取综合的有效信息,综合历史信息,优化企业的运营,提供辅助决策。以产水到用水的整个过程为主线,以企业的管理现代化为辅线,把信息技术在企业集成应用,实现从产水到用水的最大效益,是我们对以上问题的一个有益探索。 随着工业自动化控制技术和现代科技的高速开展,通讯技术、电子技术和计算机技术的有机结合,出现了高性能的PLC系统和
3、SCADA系统,使工业过程控制程序化、模块化、智能化、集成化、网络化,控制过程更加可视化和远程化。给水系统优化控制是工业过程自动化控制的一个局部,下面我们从供水企业的运营模型着手,分析企业的信息模型,提出的大规模给水系统分级控制和优化调度软硬件模式,和基于GIS平台的供水企业信息化应用方案。构筑了给水系统优化控制根本框架。运营模型 供水企业的运营主要围绕水从水源、水厂经过输配网最终到水用户的生产/消费链而进行的,其模型如图1。 生产调度通过实时采集水源和水厂的变电设备、电器开关、加压泵等设备运行参数和流量、出水口压力、余氯等控制参数,以及输配网上压力监测点和水库水位或水源井监测点的控制参数,动
4、态自动控制水源、水厂设备的启停和运行,使整个输配网上的水压保持最正确的分布和平稳状态,从而为用户提供高质量的供水效劳,减少输配过程中水的损失,最大限度延长管网的使用寿命,最终提高水厂的运营效益。 管网管理主要实现输配水管网信息管理,管网的新建、维护和改造以及水用户的管理。它必须能够保证管网信息的准确、全面和现势,满足管网规划、设计、施工和维护的要求。 营业收费完成水用户用水量的验抄、统计,根据水用户性质和收费工程的规定进行计费收费。 公司将综合生产调度、管网管理、营业收费的各种信息,结合公司的营业策略,对整个企业的运营进行科学合理的决策,从整体上实现对公司营业的宏观管理。营业收费的各种信息和财
5、务不属于本次论述的范围。 信息模型 系统运营的信息包括变化的动态信息和相对稳定的静态信息。动态信息主要是通过动态监测系统获取的实时变化的信息,主要包括水厂水源地配电设备、工艺设备的运行状态信息,比方变压器的电压电流、配电开关的闭合状态、加压泵的电压电流功率等;水厂出水口压力、流量和余氯等工艺参数信息;管网压力监测点的压力信息和水库的水位信息。这些信息一方面通过自动控制系统反响,控制水厂设备的正常运行,另一方面送到公司进行综合分析。还有一类动态信息就是水厂累计流量信息、水厂设备和管网维护信息、漏水调查信息以及用户用水量信息,这些信息经过综合分析,为供水管网的平稳运行、故障排除、查漏维护提供决策支
6、持信息。静态信息包括企业变化缓慢的一些业务信息、地理信息和企业运营的历史信息。这些信息和动态信息相互结合,提供更好的决策支持信息。更好的决策支持信息返回来对水的生产消费环节产生作用,使其成为良性的循环链,到达最大运营效益的要求。给水系统操作控制根本原理控制目标给水系统操作控制目标可以是单一的,也可以是多个的,对于取水工程,一般是BOD、DO 指标上下限、水库的水位上下限等;对于整个给水系统,控制目标是满足效劳供给及系统约束前提条件下,总费用最小;大规模给水系统操作控制是一个多目标复杂约束条件下的混合离散型动态规划问题。控制原理控制机理:依据上一时段或本时段系统返回的值或对下一时段不确定因素的预
7、测值,满足控制目标及约束条件下,生成相应的决策,对系统进行控制。在配水系统中不确定因素一般有:用户用水量、管道C值,阀门开度。 根本控制方式:规那么控制(Rules control)和反复控制(Repetitive control )。前一种控制方式决策形成是直接依据前一时段系统返回的量测值或信号进行控制,指令设计为如果那么的形式,该种控制方式在水厂制水过程中被广泛采用,是经验控制模式的典型方式。反复控制机理见图3,U为控制函数,X为状态向量,T为控制周期,Z为系统外部干扰函数,在时间t0与tf之间,系统当前状态X(t0)及预测干扰值Z(t0,t0T)反响到控制模型,产生U(t0,t0T),对
8、系统进行控制,每次以T为周期完成控制过程,当ttf时,在tf的根底上,又以T为周期完成循环控制,预测值Z在给水系统中为不确定因素。 图3反复控制机理 完成规那么控制的过程比完成反复控制的过程快得多。 大规模给水系统的分解-协调大规模复杂给水系统操作控制问题非常复杂,大量的控制变量应该在规定的时间段内得出,并完成控制;控制目标函数含有大量定速泵、变速泵及控制阀门组成的多目标离散型非线性控制问题,数学上很难解决,计算时间不能满足实时控制要求;分解-协调算法技术有利于求解大规模给水系统的操作控制问题,因此大规模给水系统采用分解-协调技术完成。大规模复杂给水系统控制问题可在时间轴和空间上进行分解,以满
9、足在线实时控制的要求,时间轴上分解要满足水库动态的要求,空间上分解可减少问题决策变量的维数,由于子问题之间存在相互关联,子问题之间用协调变量进行协调,这样一来,通过分解-协调方法可减少大规模复杂给水系统控制问题的复杂性。给水系统分解-协调控制(含两子系统)见图 4。当子系统1和子系统2之间存在利益冲突时,由协调者(上一级)进行协调。图4含两子系统的分解-协调操作控制示意 体系结构大规模给水系统分级控制和优化调度软硬件模块大规模给水系统分级控制和优化调度硬件模块大规模给水系统分级控制与优化调度硬件模块分三层:远动系统、本地控制室和协调决策层。远动系统:在现场通过传感设备采集数据,发送,经交际单元
10、传入计算机,或计算机经交际单元将信息发送传输至电动设备进行动作的过程;本地控制室的计算机间的信息是通过局域网来传输,对于大规模给水系统,协调决策层与本地控制室之间的信息传递是通过广域网完成,见图5。 图5大规模给水系统分级控制和优化调度硬件结构数据的传输方式有三种: 线(或ISTN或PSTN)、无线电涉及电缆。用 线传输数据很昂贵,如采用 线传输数据,常将基地数据储存在本地,将它打包,在 费较廉价时,传入中心计算机;配水系统中测点的信息常采用无线电波的形式发送,其安装和传输费用较低;电缆常用于近距离数据传输,其数据传输的平安性较高。 RTU(Remote Terminal Unit)和PLC单
11、元里含有许多智能控制器,装备有信号处理器和计算机内存,能收集和存储信息,通过运行自身程序模块可执行由决策层送来的命令,它们也备有大量I/O端口(I/O卡),可进行A/D和D/A转换,数字信号和模拟信号可脉冲输入和步进电动输出等功能,具有现场仪器的数字信号和模拟信号输入输出界面。 SCADA系统和PLC与RTU的交际方式有两种:点对点,一点对多点;PLC与RTU彼此间可进行串并联连接,常用端口为:RS232,RS485。大规模给水系统分级控制和优化调度软件模块 给水系统计算机控制和优化调度软件模块有:规划和资源管理软件包(如GIS系统),通讯和远动系统软件包(如SCADA软件)、决策支持系统软件
12、包。 规划和资源管理软件主要用于供水系统规划设计和管网维护部门,GIS系统是该类软件的典型代表,它记录了供水系统中所有的供水设施信息,用图形数据和属性数据存储,为决策支持系统提供供水系统静态根底资料。 通信和远动系统软件用于采集供水系统中实时数据,并将来自主站的命令传输至各站点,实现自动化控制,SCADA系统是该类软件的典型代表。 决策支持系统软件包是给水系统自动化控制和优化调度系统的智力组成局部,它形成原始的操作指令,是以供水系统优化运行(费用最小化)为目标;决策形成过程有两种方法:宏观模型优化调度和微观模型优化调度,前一种方法要求的根底资料较少,受宏观模型的局限性限制,在先进的水司里应用较
13、少,后一种方法考虑了管网微观结构,随着供水调度根底水平的不断提高,微观模型优化调度是开展方向。 大规模给水系统优化调度软件框架见图6、图7。 图6宏观模型优化调度软件框架图7微观模型优化调度软件框架大规模给水系统典型的分级控制结构大规模给水系统中包含许多供水区域、水厂、中途泵站或水塔,每个水厂或供水区域内有本地控制室,各本地控制室在整个供水系统决策层(中心调度室)的协调下,保证整个供水系统供水费用最小。 大规模给水系统典型的分级控制结构有两种:见图8和图9。图8中,供水区域内可含有中途泵站或水塔;图9中,供水区域内可含有水厂或中途泵站或水塔。 图7大规模给水系统典型的分级控制结构图8大规模给水
14、系统典型的分级控制结构2 以GIS平台为核心的供水企业信息系统的体系结构 无论是动态信息还是静态信息,它们都和其实体所在的地理位置密切相关。因此构建以GIS为平台的信息综合、分析和决策的供水企业信息系统是另一种最正确选择。 GIS是一种采集、存储、管理、分析、显示与应用地理信息的计算机系统,是分析和处理地理数据的通用技术,GIS所特有的空间分析功能和可视化表达方式正符合供水管网信息所具有的区域性强、隐蔽、复杂、动态、数据量大等特点。同时GIS也是把供水企业的各种信息有效聚合的粘合剂,所有的信息通过和地理位置相关,就可以到达有机结合的目标。通过将各种信息在GIS平台上的集成,从而为企业提供更深层
15、次的信息化应用。 以GIS平台为核心的供水企业信息系统的体系结构如下列图所示: 信息平台的数据输入/转换中间件可以把企业各种底层设备获取的信息采集到系统的数据库中。对于不同的底层设备,只要开发相对应的数据输入中间件,就可以很容易接入到系统中去。而基于该信息平台,用户可以进行各种需要的企业信息化应用。而这些信息的获取、存贮、组织都完全由该信息平台来实现,从而使系统具有很好的可扩展性和开放性。同时,系统把企业的各种信息集成在一起,实现信息的集成应用。2 系统的组成决策支持系统输配水系统模拟计算管网模型给水管网系统建设投资占给水系统总投资的70以上,供水电费亦多在总供水本钱费用的5060,所以,给水
16、管网的设计与运行管理质量直接影响供水系统的经济效益。管网模型软件对给水管网建立数学模型,并进行规划设计计算和运行状态的动态模拟,求解管网中各管段及泵站的流量、压力和水质分布状态,并可计算常年供水本钱费用,分析评价管网规划设计的合理程度及运行规律,实现设计和运行管理的科学化。国内通常称为“管网建模。 “管网建模软件应具有以下功能:网水力平差计算:建立管网水力平差模拟和计算程序,平差计算多水源管网水力运行状况,进行包括最高时、消防时、事故时等多工况的计算,可计算包含多种管材、水泵、水塔、阀门等特殊设备的管网,并可对平差计算结果进行工程标注。管网规划设计计算和多工况状态模拟:对供水管网规划设计及改扩
17、建方案进行计算和比拟,合理地确定管径,使管网的建设和运行费用最低。管网优化计算采用了遗传算法,不需要用户进行预分配管段流量,软件能根据实际情况进行管段流量、流速、管径、节点水头等多方面约束,计算出一定设计年限内,管网建造费用和运行费用之和为最小时的市场规格管径和水头损失。管网动态实时模拟和供水费用计算:建立用水量动态分配模型和计算程序,进行实时水力模拟。实时模拟的根本方法是以管网水力平差计算为根底,将分时段的用水量做为近似动态数据,对一定时期内的运行状态连续模拟计算,反映供水系统运行管理质量,并进行长期运行状态预测,为合理调度提供根底依据。可模拟一天内各个时段的管段流量、流速、水力坡度、水头损
18、失、节点流量、压力、水池水位、水泵工况点、功率和效率。平差计算和规划设计计算成果图形表达和绘图:建立城市背景地图及管网图形表达系统,运用动态数据库提供数据报表功能,方便用户快速浏览管网根底数据和平差计算的结果。数据报表与管网根底数据直接连结,可在数据报表上修改管网属性,方便用户使用。并能读取SCADA数据库中的压力、流量等数据,读取GIS数据库中管网数据信息、读取营业抄收数据库中用户水量信息。良好的计算数据输入、输出、模拟计算和成果表达人机交互界面:系统采用多窗口、多视图的用户界面,具有菜单、工具条、滚动条、状态条,界面汉字化,提供超强缩放、移动引擎,实现实时无级图形放缩、平移,提供丰富的标注
19、功能。可根据管径、流量、坡度、流速等设置颜色梯度,可引入AutoCAD的dxf文件格式,在管网背景图上进行多种方式的成果表达。2与数据库灵活交互连接接口 管网优化设计与优化调度软件 优化调度模型 给水管网优化调度是在管网和水源现有设备的前提下,根据管网监测系统反响的供水系统运行信息,在保证平安、可靠满足供水需求的前提下,合理地调整调度方案,使供水系统的总运行费用最小就是优化调度的目的。考虑到供水过程中,主要费用是供水电耗和制水本钱,因此优化目标函数数学表达式为:式中,f 系统供水费用;ek 第k小时电价,单位:元;Qki 第i个泵站第k小时的供水量,单位:m3/s;Hki 第i个泵站第k小时净
20、扬程,单位:m;cik 第i个水厂第k小时的单位制水本钱,单位:元/m3;ki 第i个泵站第k小时的工作效率; 水比重,单位:千牛顿/m3;p 泵站数;ni 第i个泵站的水泵数目。 2约束条件: 1管网总供水量等于总用水量: QT: 预测总用水量; QI:第i号泵站供水量。2 测压点压力约束:满足各节点压力要求。给水管网水质模拟软件给水管网水质模拟是计算跟踪管网水中溶解物质的传输与各时间内流经路线和分布。水质模型可分为稳态模型和准动态模型二种。1稳态模型假定管网处于水力稳定状态,在一定的运行负荷下,物质沿着流动路径和时间运行,到达水质稳定。数学模型为: 管段浓度方程: Cu,jiCj , Cl
21、,ji=Cu,ji , Cl,ji=Cu,jie-KT式中,j,k:分别表示节点j的上游和下游邻接点;qji,qik:管段流量; Qs,Cs:水源供水量及进水浓度;Cu,ji:管段j, i起端浓度;Cl,ji:管段j, i末端浓度;K:管段j,i中物质反响速率常数;K:管段j,i中的流径时间。保守物质沿管线流动过程中,浓度不发生变化,末端浓度等于起端浓度。非保守物质在流动过程中同时发生着反响,以一级反响为例,反响动力学方程为:dC/dt=-KC 物质沿管段流动过程中发生衰减,以不同于管段起端的浓度进入下游节点。水源供水比例数学模型为: Ps,ji=Ps,j 式中,j:节点I的上游邻接点;Ps,
22、i,Ps,ji:水源S对节点i和管段j,i的供水比例; qji:管段流量; Qs:水源供水量。 2准动态模型准动态模型的计算结果要比稳态模型的可信度高,因此,在实际工程中,大局部采用准动态模型。供水管网信息系统 利用地理信息和计算机技术对供水管网数据含管网图形、管线、阀门等重点设施和用户情况等资料作全面而准确的综合管理,能随时掌握全市供水系统的最新资料,供管网管理、规划设计、运行调度、决策使用。 系统应具有的功能 输入手段:可用键盘、鼠标定位,数字化仪获取,用扫描仪扫描后矢量化,还可直接读取外业探测数据。 图形浏览:可无级缩放、锁定漫游;提供“鹰眼,可随时查看所在位置或跳跃到指定位置。具有定位
23、区域管理功能,可按道路、小区、单位、门栋调图。可按匹配度模糊查询。 分层管理:允许用户管理多层地理信息并按需要将供水管网数据进行分层管段、阀门、水表等。 数据库连接:通过ODBC可与多种商用数据库进行挂接。 符合行业标准:按供水行业日常管理模式组织管理流程,遵循行业习惯,数据分类及缺省数据库设计已经专家核定,数据库结构还可根据用户需求动态修改。 事故处理:爆管发生后可迅速制定关阀及扩大关阀方案,查找需关阀门和受影响用户,查询及打印阀门、用户报表,打印抢修单、闸阀卡片及停水通知单。 断面、立体:可生成横断面图、纵剖面及三维立体图,在图中可任意查询管点、管线的专业数据。立体图可在线框图和真实感效果
24、图间切换,可选择平行投影或透视投影方式,可在空间任意旋转。 设计任务管理:将设计管线和现状管线分开,根据现状设计任务,竣工后可无缝回贴,有效管理各类设计图件。 管线设计模块:可使用多种解析方式录入管线,如参照红线、马路边线、马路中心线以一定距离和角度铺设管线,设备库管理可自行定义多种管网设备,可管理输出设计图、竣工图、桩号图、轴测图,生成配件统计表。 动态标注:标注形式多种多样,自动防止相互压盖,管件属性变化,标注自动跟着变化。 检查与监理:按国家标准实施检查,判断数据完备与否,检查管线平面间距、垂直净距等指标是否合格。 联动查询:可任意指定图形查询数据,浏览数据时可同时参看图形。 综合检索:
25、用户可用多种方法指定检索区域、属性条件使用条件表达式、图形条件,检索结果可以表格、统计图折线图、直方图、立体直方图、饼图、立体饼图等、分幅图、文字等多种方式输出。 量算工具:可量算底图上和管网中点与点、线与线、点与线间的平面或立体空间距离。 管网平差计算:自动简化管网,分配流量,计算水头损失,计算各节点水压,生成等水压线图和水压三维立体图。 网络数据并发操作:客户机/效劳器模式,借助MAPGIS空间数据引擎,实现管网数据的高效访问及维护,保证数据一致性。 完备的管网数据模型:可管理偏管、井、直管、大样图、设计任务等。 网络权限管理:通过访问权限的设定和菜单项的过滤验证保证数据的平安。 用户水表
26、管理:允许在各个水表、入户夹处查询用户群详细信息,动态读取用水量。 设备维修记录:随时记录设备维修情况,由设备号、时间等查询维修记录。可根据维修记录及相关标准自动提出更换设备建议。2.3 数据采集和控制系统功能分析监控对象的分析;数据采集与处理模式和控制方式包括水厂水源站 监控对象水源站是整个供水/给水的命脉,一般分为水源井地下水和露天水源如:水库、江河、湖泊等,水源可以是单一的,也可以是多个的;主要生产设备包 括取水泵站。对于取水工程,SCADA系统一般是采集BOD、DO 指标、水库的水位等;水泵电机主要采集电机温度、水泵前后轴承温度、水泵出口压力,电流,流量和运行状态等数据,以及电机的启停
27、控制。 处理模式和控制方式数据 处理方式 备注 BOD生化需氧量 DO(容氧量) 如果该指标超过上下限,说明该水源已不能使用,需停止取水。 取地下水时,一般不用。 水位 如果该指标超过下限,说明该水源已不能使用,需停止取水。 电流 电机电流在开机时的冲击很大,在延迟一定时间后再采集,该指标一般采用二级限值,100%额定电流时,延时报警,或用死区消除峰值1xx%,停机 流量 当流量小于%x额定流量时,停机处理。 电机温度 当流量大于%x额定温度时,停机处理 水泵前后轴承温度当流量大于%x额定温度时,停机处理 水泵出口压力如果该指标超过上下限时,报警, 泵运行状态泵运行状态发生变化时,报警并突发。
28、 启/停接受指令对泵进行控制;或根据相关的数据,进行相应的动作。 耗电 2.3.1.1.2 补压站 监控对象 补压站与水源站的生产过程和生产设备的配置是相同的,只是仅当供水管网压力缺乏时,才启动补压水源。2.3.1.1.2.2 处理模式和控制方式数据 处理方式 备注 BOD生化需氧量 DO(容氧量) 如果该指标超过上下限,说明该水源已不能使用,需停止取水。 取地下水时,一般不用。 水位 如果该指标超过下限,说明该水源已不能使用,需停止取水。 电流 电机电流在开机时的冲击很大,在延迟一定时间后再采集,该指标一般采用二级限值,100%额定电流时,延时报警,或用死区消除峰值1xx%,停机 流量 当流
29、量小于%x额定流量时,停机处理。 电机温度 当流量大于%x额定温度时,停机处理 水泵前后轴承温度当流量大于%x额定温度时,停机处理 水泵出口压力如果该指标超过上下限时,报警, 泵运行状态泵运行状态发生变化时,报警并突发。 启/停接受指令对泵进行控制;或根据相关的数据,进行相应的动作。 耗电 加压站 监控对象 可含有中途泵站或水塔。水泵电机主要采集电机温度、水泵前后轴承温度、水泵出口压力,电流,流量和运行状态等数据,以及电机的启停控制;水塔的水位和电机的耗电等。 处理模式和控制方式数据 处理方式 备注 水位 如果该指标超过下限,说明该水源已不能使用,需停止取水。 电流 电机电流在开机时的冲击很大
30、,在延迟一定时间后再采集,该指标一般采用二级限值,100%额定电流时,延时报警,或用死区消除峰值1xx%,停机 流量 当流量小于%x额定流量时,停机处理。 电机温度 当流量大于%x额定温度时,停机处理 水泵前后轴承温度当流量大于%x额定温度时,停机处理 水泵出口压力如果该指标超过上下限时,报警, 泵运行状态泵运行状态发生变化时,报警并突发。 启/停接受指令对泵进行控制;或根据相关的数据,进行相应的动作。 耗电 测压点 管网压力是生产过程的一个非常重要的参数,它关系到管网的平安。所以在工艺设计中,会根据管网的实际情况,科学的,合理的设置测压点。对于每一个测压点所需采集的数据是不同的,最多的情况应该是:压力,流量和温度。 水厂自动化设计.1 投加站由于投加站设备以投加自动化设备、仪表为主,所以该站RTU主要负责完成投加站投身数据采集工作。在投
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1