ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:28.20KB ,
资源ID:9162716      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/9162716.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(背包九讲.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

背包九讲.docx

1、背包九讲P01: 01背包问题题目有N件物品和一个容量为V的背包。第i件物品的费用是ci,价值是wi。求解将哪些物品装入背包可使价值总和最大。基本思路这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。用子问题定义状态:即fiv表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:fiv=maxfi-1v,fi-1v-ci+wi这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题

2、。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为fi-1v;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-ci的背包中”,此时能获得的最大价值就是fi-1v-ci再加上通过放入第i件物品获得的价值wi。优化空间复杂度以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1.N,每次算出来二维数组fi0.V的所有值。那么,如果只用一个数组f0.V,能不能保证第i次循环结束后fv中表示的就是我们定义的状态fiv呢?fiv是由f

3、i-1v和fi-1v-ci两个子问题递推而来,能否保证在推fiv时(也即在第i次主循环中推fv时)能够得到fi-1v和fi-1v-ci的值呢?事实上,这要求在每次主循环中我们以v=V.0的顺序推fv,这样才能保证推fv时fv-ci保存的是状态fi-1v-ci的值。伪代码如下:for i=1.N for v=V.0 fv=maxfv,fv-ci+wi;其中的fv=maxfv,fv-ci一句恰就相当于我们的转移方程fiv=maxfi-1v,fi-1v-ci,因为现在的fv-ci就相当于原来的fi-1v-ci。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了fiv由fiv-ci推知,与本题意不

4、符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。procedure ZeroOnePack(cost,weight) for v=V.cost fv=maxfv,fv-cost+weight注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V.0是为了在程序中体现每个状态都

5、按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f0.cost-1,这是显然的。有了这个过程以后,01背包问题的伪代码就可以这样写:for i=1.N ZeroOnePack(ci,wi);初始化的细节问题我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。如果是第一种问法,要求恰好装满背包,那么在初始化时除了f0为0其它f1.V均设为-,这样就可以保证最终得到的fN是一种恰好

6、装满背包的最优解。如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f0.V全部设为0。为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。小结01背包问题是最基本的背

7、包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。首页P02: 完全背包问题题目有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是ci,价值是wi。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。基本思路这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件等很多种。如果仍然按照解01背包时的思路,

8、令fiv表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:fiv=maxfi-1v-k*ci+k*wi|0=k*ci=v这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间已经不是常数了,求解状态fiv的时间是O(v/ci),总的复杂度是超过O(VN)的。将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。一个简单有效的优化完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足ci=wj,则将物品j去掉,不

9、用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。这个优化可以简单的O(N2)地实现,一般都可以承受。另外,针对背包问题而言,比较不错的一种方法是:首先将费用大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化。这个不太重要的过程就不给出伪代码了,希望你能独立思考写出伪代码或程序。转化为01背包问题求解既然01背包问题是最基本的背

10、包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/ci件,于是可以把第i种物品转化为V/ci件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。更高效的转化方法是:把第i种物品拆成费用为ci*2k、价值为wi*2k的若干件物品,其中k满足ci*2k=V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2k件物品的和。这样把每种物品拆成O(log(V/ci)件物品,是一个很大的改进。但我们有更优的O(VN

11、)的算法。O(VN)的算法这个算法使用一维数组,先看伪代码:for i=1.N for v=0.V fv=maxfv,fv-cost+weight你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V.0的逆序来循环。这是因为要保证第i次循环中的状态fiv是由状态fi-1v-ci递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第I 件物品的子结果fi-1v-ci。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个

12、可能已选入第i种物品的子结果fiv-ci,所以就可以并且必须采用v=0.V的顺序循环。这就是这个简单的程序为何成立的道理。这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:fiv=maxfi-1v,fiv-ci+wi将这个方程用一维数组实现,便得到了上面的伪代码。最后抽象出处理一件完全背包类物品的过程伪代码,以后会用到:procedure CompletePack(cost,weight) for v=cost.V fv=maxfv,fv-ci+wi总结完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN)的算法“

13、的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。首页P03: 多重背包问题题目有N种物品和一个容量为V的背包。第i种物品最多有ni件可用,每件费用是ci,价值是wi。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。基本算法这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有ni+1种策略:取0件,取1件取ni件。令fiv表示前i

14、种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:fiv=maxfi-1v-k*ci+k*wi|0=k0的最大整数。例如,如果ni为13,就将这种物品分成系数分别为1,2,4,6的四件物品。分成的这几件物品的系数和为ni,表明不可能取多于ni件的第i种物品。另外这种方法也能保证对于0.ni间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0.2k-1和2k.ni两段来分别讨论得出,并不难,希望你自己思考尝试一下。这样就将第i种物品分成了O(log ni)种物品,将原问题转化为了复杂度为O(V*log ni)的01背包问题,是很大的改进。下面给出O(log amount)时间处

15、理一件多重背包中物品的过程,其中amount表示物品的数量:procedure MultiplePack(cost,weight,amount) if cost*amount=V CompletePack(cost,weight) return integer k=1 while knum ZeroOnePack(k*cost,k*weight) amount=amount-k k=k*2ZeroOnePack(amount*cost,amount*weight)希望你仔细体会这个伪代码,如果不太理解的话,不妨翻译成程序代码以后,单步执行几次,或者头脑加纸笔模拟一下,也许就会慢慢理解了。O(V

16、N)的算法多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。小结这里我们看到了将一个算法的复杂度由O(V*ni)改进到O(V*log ni)的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并将完整的程序代码写出来。首页P04: 混合三种背包问题问题如果将P01、P02、P03混合起来。也就是说,有的物品只可以取

17、一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?01背包与完全背包的混合考虑到在P01和P02中给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。伪代码如下:for i=1.N if 第i件物品是01背包 for v=V.0 fv=maxfv,fv-ci+wi; else if 第i件物品是完全背包 for v=0.V fv=maxfv,fv-ci+wi;再加上多重背包如果再加上有的物品最多可以取

18、有限次,那么原则上也可以给出O(VN)的解法:遇到多重背包类型的物品用单调队列解即可。但如果不考虑超过NOIP范围的算法的话,用P03中将每个这类物品分成O(log ni)个01背包的物品的方法也已经很优了。当然,更清晰的写法是调用我们前面给出的三个相关过程。for i=1.N if 第i件物品是01背包 ZeroOnePack(ci,wi) else if 第i件物品是完全背包 CompletePack(ci,wi) else if 第i件物品是多重背包 MultiplePack(ci,wi,ni)在最初写出这三个过程的时候,可能完全没有想到它们会在这里混合应用。我想这体现了编程中抽象的威力

19、。如果你一直就是以这种“抽象出过程”的方式写每一类背包问题的,也非常清楚它们的实现中细微的不同,那么在遇到混合三种背包问题的题目时,一定能很快想到上面简洁的解法,对吗?小结有人说,困难的题目都是由简单的题目叠加而来的。这句话是否公理暂且存之不论,但它在本讲中已经得到了充分的体现。本来01背包、完全背包、多重背包都不是什么难题,但将它们简单地组合起来以后就得到了这样一道一定能吓倒不少人的题目。但只要基础扎实,领会三种基本背包问题的思想,就可以做到把困难的题目拆分成简单的题目来解决。首页P05: 二维费用的背包问题问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付

20、出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为ai和bi。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为wi。算法费用加了一维,只需状态也加一维即可。设fivu表示前i件物品付出两种代价分别为v和u时可获得的最大价值。状态转移方程就是:fivu=maxfi-1vu,fi-1v-aiu-bi+wi如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量v和u采用逆序的循环,当物品有如完全背包问题时采用顺序的循环。当物品有如多重背包问题时拆分物品。这里就不再给出

21、伪代码了,相信有了前面的基础,你能够自己实现出这个问题的程序。物品总个数的限制(?)有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设fvm表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f0.V0.M范围内寻找答案。小结当发现由熟悉的动态规划题目变形得来的题目时,在原来的状态中加一纬以满足新的限制是一种比较通用的方法。希望你能从本讲中初步体会到这种方法。P06: 分组的背包问题问题有N件物品和一个

22、容量为V的背包。第i件物品的费用是ci,价值是wi。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。算法这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设fkv表示前k组物品花费费用v能取得的最大权值,则有:fkv=maxfk-1v,fk-1v-ci+wi|物品i属于第k组使用一维数组的伪代码如下:for 所有的组k for v=V.0 for 所有的i属于组k fv=maxfv,fv-ci+wi注意这里的三层循环的顺序,甚至在本文的beta版中我自己都写错了。“for v=V

23、.0”这一层循环必须在“for 所有的i属于组k”之外。这样才能保证每一组内的物品最多只有一个会被添加到背包中。另外,显然可以对每组内的物品应用P02中“一个简单有效的优化”。小结分组的背包问题将彼此互斥的若干物品称为一个组,这建立了一个很好的模型。不少背包问题的变形都可以转化为分组的背包问题(例如P07),由分组的背包问题进一步可定义“泛化物品”的概念,十分有利于解题。P07: 有依赖的背包问题简化的问题这种背包问题的物品间存在某种“依赖”的关系。也就是说,i依赖于j,表示若选物品i,则必须选物品j。为了简化起见,我们先设没有某个物品既依赖于别的物品,又被别的物品所依赖;另外,没有某件物品同

24、时依赖多件物品。算法这个问题由NOIP2006金明的预算方案一题扩展而来。遵从该题的提法,将不依赖于别的物品的物品称为“主件”,依赖于某主件的物品称为“附件”。由这个问题的简化条件可知所有的物品由若干主件和依赖于每个主件的一个附件集合组成。按照背包问题的一般思路,仅考虑一个主件和它的附件集合。可是,可用的策略非常多,包括:一个也不选,仅选择主件,选择主件后再选择一个附件,选择主件后再选择两个附件无法用状态转移方程来表示如此多的策略。(事实上,设有n个附件,则策略有2n+1个,为指数级。)考虑到所有这些策略都是互斥的(也就是说,你只能选择一种策略),所以一个主件和它的附件集合实际上对应于P06中

25、的一个物品组,每个选择了主件又选择了若干个附件的策略对应于这个物品组中的一个物品,其费用和价值都是这个策略中的物品的值的和。但仅仅是这一步转化并不能给出一个好的算法,因为物品组中的物品还是像原问题的策略一样多。再考虑P06中的一句话: 可以对每组中的物品应用P02中“一个简单有效的优化”。 这提示我们,对于一个物品组中的物品,所有费用相同的物品只留一个价值最大的,不影响结果。所以,我们可以对主件i的“附件集合”先进行一次01背包,得到费用依次为0.V-ci所有这些值时相应的最大价值f0.V-ci。那么这个主件及它的附件集合相当于V-ci+1个物品的物品组,其中费用为ci+k的物品的价值为fk+

26、wi。也就是说原来指数级的策略中有很多策略都是冗余的,通过一次01背包后,将主件i转化为V-ci+1个物品的物品组,就可以直接应用P06的算法解决问题了。较一般的问题更一般的问题是:依赖关系以图论中“森林”的形式给出(森林即多叉树的集合),也就是说,主件的附件仍然可以具有自己的附件集合,限制只是每个物品最多只依赖于一个物品(只有一个主件)且不出现循环依赖。解决这个问题仍然可以用将每个主件及其附件集合转化为物品组的方式。唯一不同的是,由于附件可能还有附件,就不能将每个附件都看作一个一般的01背包中的物品了。若这个附件也有附件集合,则它必定要被先转化为物品组,然后用分组的背包问题解出主件及其附件集

27、合所对应的附件组中各个费用的附件所对应的价值。事实上,这是一种树形DP,其特点是每个父节点都需要对它的各个儿子的属性进行一次DP以求得自己的相关属性。这已经触及到了“泛化物品”的思想。看完P08后,你会发现这个“依赖关系树”每一个子树都等价于一件泛化物品,求某节点为根的子树对应的泛化物品相当于求其所有儿子的对应的泛化物品之和。小结NOIP2006的那道背包问题我做得很失败,写了上百行的代码,却一分未得。后来我通过思考发现通过引入“物品组”和“依赖”的概念可以加深对这题的理解,还可以解决它的推广问题。用物品组的思想考虑那题中极其特殊的依赖关系:物品不能既作主件又作附件,每个主件最多有两个附件,可

28、以发现一个主件和它的两个附件等价于一个由四个物品组成的物品组,这便揭示了问题的某种本质。我想说:失败不是什么丢人的事情,从失败中全无收获才是。P08: 泛化物品定义考虑这样一种物品,它并没有固定的费用和价值,而是它的价值随着你分配给它的费用而变化。这就是泛化物品的概念。更严格的定义之。在背包容量为V的背包问题中,泛化物品是一个定义域为0.V中的整数的函数h,当分配给它的费用为v时,能得到的价值就是h(v)。这个定义有一点点抽象,另一种理解是一个泛化物品就是一个数组h0.V,给它费用v,可得到价值hV。一个费用为c价值为w的物品,如果它是01背包中的物品,那么把它看成泛化物品,它就是除了h(c)

29、=w其它函数值都为0的一个函数。如果它是完全背包中的物品,那么它可以看成这样一个函数,仅当v被c整除时有h(v)=v/c*w,其它函数值均为0。如果它是多重背包中重复次数最多为n的物品,那么它对应的泛化物品的函数有h(v)=v/c*w仅当v被c整除且v/c=n,其它情况函数值均为0。一个物品组可以看作一个泛化物品h。对于一个0.V中的v,若物品组中不存在费用为v的的物品,则h(v)=0,否则h(v)为所有费用为v的物品的最大价值。P07中每个主件及其附件集合等价于一个物品组,自然也可看作一个泛化物品。泛化物品的和如果面对两个泛化物品h和l,要用给定的费用从这两个泛化物品中得到最大的价值,怎么求呢?事实上,对于一个给定的费用v,只需枚举将这个费用如何分配给两个泛化物品就可以了。同样的,对于0.V的

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1